Exercice 1

Résoudre dans $\mathbb{N}: n^2 + n + 5|7n - 3$.

Exercice 2

Démontrer que, pour tout $n \in \mathbb{N}$, on a : $5|7^n - 2^n$.

Exercice 3

Démontrer que, pour tout $n \in \mathbb{Z}$, on a : $5|n(n^2+1)(2n^2+3)$.

Exercice 4

Déterminer les entiers naturels n tels que : $n + 3|n^2 + 7$.

Corrigé

Exercice 1

Résoudre dans $\mathbb{N}: n^2 + n + 5|7n - 3$.

<u>Analyse</u>

Soit $n \in \mathbb{N}$ tel que $n^2 + n + 5|7n - 3$.

$$n^2 + n + 5 > 0$$
 et $n^2 + n + 5$ divise $7n - 3 \neq 0$, donc : $1 \le n^2 + n + 5 \le 7n - 3$.

La première relation d'ordre est toujours vérifiée, concentrons-nous sur la seconde.

On a les équivalences :

$$n^2 + n + 5 \le 7n - 3 \Leftrightarrow n^2 + n + 5 - (7n - 3) \le 0 \Leftrightarrow n^2 + n + 5 - 7n + 3 \le 0 \Leftrightarrow n^2 - 6n + 8 \le 0 \Leftrightarrow (n - 2)(n - 4) \le 0 \Leftrightarrow 2 \le n \le 4$$

Synthèse

• si n = 2,

alors:
$$n^2 + n + 5 = 2^2 + 2 + 5 = 11$$
, $7n - 3 = 7(2) - 3 = 11$, $11|11$ donc $n = 2$ est accepté

• si n = 3,

alors :
$$n^2 + n + 5 = 9 + 3 + 5 = 17$$
, $7n - 3 = 7(3) - 3 = 18$, $non(17|18)$ donc $n = 3$ est refusé

• $\sin n = 4$,

alors:
$$n^2 + n + 5 = 16 + 4 + 5 = 25$$
, $7n - 3 = 7(4) - 3 = 25$, $25|25$ donc $n = 4$ accepté

Conclusion: les solutions sont 2 et 4.

Exercice 2

Démontrer que, pour tout $n \in \mathbb{N}$, on a : $5|7^n - 2^n$.

Méthode 1 **Démonstration par récurrence**

Pour tout $n \in \mathbb{N}$, on considère la proposition $P_n : \ll 5|7^n - 2^n >$.

initialisation

$$5^{0} - 2^{0} = 1 - 1 = 0$$
, or : 5|0, donc P_{0} est vraie

hérédité

soit $k \in \mathbb{N}$ tel que P_k : « $5|7^k-2^k$ » est vraie et montrons que P_{k+1} : « $5|7^{k+1}-2^{k+1}$ » est vraie. On a :

$$7^{k+1} - 2^{k+1} = 7 \times 7^k - 2 \times 2^k = 7 \times 7^k - 7 \times 2^k + 7 \times 2^k - 2 \times 2^k = 7 \times (7^k - 2^k) + 5 \times 2^k$$

 $7^{k+1} - 2^{k+1} = 7 \times (7^k - 2^k) + 2^k \times 5$

Or $5|7^k - 2^k$ (H.R.) et 5|5 donc 5 divise toute combinaison linéaire de $7^k - 2^k$ et 5, en particulier : $5|7 \times (7^k - 2^k) + 2^k \times 5$, autrement dit : $5|7^{k+1} - 2^{k+1}|$ donc P_{k+1} est vraie.

Conclusion:

Il résulte des deux points précédents et du principe de récurrence que, pour tout $n \in \mathbb{N}$, P_n est vraie, autrement dit : $\forall n \in \mathbb{N}$, $5 \mid 7^n - 2^n$.

Méthode 2 Utilisation des congruences

Soit $n \in \mathbb{N}$.

On a : $7 \equiv 2$ [5], donc : $7^n \equiv 2^n$ [5], autrement dit : $5|7^n - 2^n$.

Conclusion:

 $\forall n \in \mathbb{N}, 5 | 7^n - 2^n$

Exercice 3

Démontrer que, pour tout $n \in \mathbb{Z}$, on a : $5|n(n^2+1)(2n^2+3)$.

Méthode 1:

Soit $n \in \mathbb{Z}$.

Procédons par disjonction de cas suivant le reste r de la division euclidienne de n par 5.

- si r = 0, alors $\exists k \in \mathbb{Z}, n = 5k$, donc 5|n, d'où : $5|n(n^2 + 1)(2n^2 + 3)$.
- si r=1, alors $\exists k \in \mathbb{Z}$, n=5k+1; $2n^2+3=2(5k+1)^2+3=2(25k^2+10k+1)+3=50k^2+20k+5=5(10k^2+4k+1)$ donc $5|2n^2+3$, d'où : $5|n(n^2+1)(2n^2+3)$.
- si r=2, alors $\exists k\in\mathbb{Z}, n=5k+2$; $n^2+1=(5k+2)^2+1=25k^2+20k+4+1=25k^2+20k+5=5(5k^2+4k+1)$ donc $5|n^2+1$, d'où : $5|n(n^2+1)(2n^2+3)$.
- si r=3, alors $\exists k\in\mathbb{Z}, n=5k+3$, donc : $n^2+1=(5k+3)^2+1=25k^2+30k+9+1=25k^2+30k+10=5(5k^2+6k+2)$ donc $5|n^2+1$, d'où : $5|n(n^2+1)(2n^2+3)$.
- si r=4, alors $\exists k \in \mathbb{Z}, n=5k+4$, donc : $2n^2+3=2(5k+4)^2+3=2(25k^2+40k+16)+3=50k^2+80k+32+3\\ =50k^2+80k+35=5(10k^2+16k+7)$ donc $5|2n^2+3$, d'où : $5|n(n^2+1)(2n^2+3)$.

Conclusion:

$$\forall n \in \mathbb{Z}, 5 | n(n^2 + 1)(2n^2 + 3)$$

Méthode 2 Utilisation d'un tableau de congruence

Soit $n \in \mathbb{Z}$, utilisant une tableau de congruence modulo 5 :

$n \equiv$	0	1	2	3	4
$n^2 \equiv$	0	1	4	9	16
				≡ 4	≡ 1
$n^2 + 1 \equiv$	1	2	5	5	2
			≡ 0	≡ 0	
$2n^2 + 3 \equiv$	2(0) + 3	2(1) + 3	2(4) + 3	2(4) + 3	2(1) + 3
	≡ 3	≡ 5	■ 11	≡ 21	≡ 5
		$\equiv 0$	≡ 1	≡ 1	≡ 0
$n(n^2+1)(2n^2+3) \equiv$	$0 \times 1 \times 3$	$1 \times 2 \times 0$	2(0)(1)	3(0)(1)	4(2)(0)
	$\equiv 0$	$\equiv 0$	≡ 0	$\equiv 0$	$\equiv 0$

Par disjonction de cas, on déduit de la dernière ligne que : $\forall n \in \mathbb{Z}, n(n^2 + 1)(2n^2 + 3) \equiv 0$ [5] autrement dit : $\forall n \in \mathbb{N}, 5 | n(n^2 + 1)(2n^2 + 3)$.

Exercice 4

Déterminer les entiers naturels n tels que : $n + 3|n^2 + 7$.

Analyse

Soit $n \in \mathbb{Z}$ tel que $n + 3|n^2 + 7$.

On a : $n + 3|n^2 + 7$ et n + 3|n + 3 donc n + 3 divise toute combinaison linéaire de $n^2 + 7$ et n + 3, en particulier : $n+3|1(n^2+7)-n(n+3)$, c'est-à-dire : $n+3|n^2+7-n^2-3n$, autrement dit : n + 3| - 3n + 7.

On a : n + 3 | -3n + 7 et n + 3 | n + 3 donc n + 3 divise toute combinaison linéaire de -3n + 7 et n + 3, en particulier : n + 3|1(-3n + 7) + 3(n + 3), c'est-à-dire : n + 3|16.

Or, on a $n \in \mathbb{N}$ donc $n + 3 \ge 3$, par conséquent n + 3 est un diviseur de 16 supérieur ou égal à 3, de tels diviseurs sont 4, 8 et 16 donc trois cas peuvent se présenter :

•
$$n + 3 = 4 \Leftrightarrow n = 1$$

•
$$n + 3 = 8 \Leftrightarrow n = 5$$

•
$$n + 3 = 8 \Leftrightarrow n = 5$$
 • $n + 3 = 16 \Leftrightarrow n = 13$

Il y a trois candidats solutions: 1, 5 et 13.

Synthèse

• si
$$n = 1$$

 $n + 3 = 1 + 3 = 4$
 $n^2 + 7 = 1^2 + 7 = 8$
4|8 donc $n = 1$ est accepté

•
$$\sin n = 5$$

 $n + 3 = 5 + 3 = 8$
 $n^2 + 7 = 5^2 + 7 = 32$
8|32 donc $n = 5$ est accepté

• si
$$n = 13$$

 $n + 3 = 13 + 3 = 16$
 $n^2 + 7 = 13^2 + 7 = 176$
 $176 = 11 \times 16 \text{ donc } 16|176$
 $n = 13 \text{ est accepté}$

Conclusion

Les solutions dans \mathbb{N} de $n+3|n^2+7$ sont : 1, 5 et 13.