Maths XP Contrôle $n^{\circ}2$ Lundi 24/ 11/2025 Thiaude P. + Vermeulen G. 1h Calculatrice interdite

Carl Friedrich GAUSS

(1777 - 1855)

Mathématicien, astronome et physicien allemand. Est à l'origine de la notion de congruence.

(image: source Wikipedia)

Exercice 1 [4 pts] Démontrer que : $\forall n \in \mathbb{N}$, $7|23^n - 9^n + 133$.

Exercice 2 [4 pts] Déterminer le reste de la division euclidienne de 8^{173} par 5.

Exercice 3 [4 pts]

- 1. Montrer que 6 n'a pas d'inverse modulo 8.
- **2.** Soient $a \in \mathbb{Z}$, $m \in \mathbb{N}^*$ tels qu'il existe $d \in \mathbb{Z} \setminus \{-1, 1\}$ vérifiant : $d \mid a$ et $d \mid m$. Montrer que a n'a pas d'inverse modulo m.

Exercice 4 [4 pts]

Les questions 1. et 2. sont indépendantes.

- 1. Quel est le chiffre des unités de 3²⁰²⁵ ?
- **2.** Montrer que $3^{10} \equiv 49 \; [100]$ puis déterminer les deux derniers chiffres de 3^{2025} .

Exercice 5 [4 pts]

Les questions 1. et 2. sont indépendantes.

Soient a, b et c trois entiers relatifs tels que : $a^2 + b^2 = c^2$.

- 1. Dans cette question on se propose de démontrer que : 3|abc.
 - **a.** Montrer que, pour tout $x \in \mathbb{Z}$, $x^2 \equiv 0$ ou 1 [3].
 - **b.** Montrer que : si $a \equiv 0$ [3] ou $b \equiv 0$ [3], alors : 3|abc.
 - **c.** On suppose que : $a \not\equiv 0$ [3] et $b \not\equiv 0$ [3], justifier que $a^2 + b^2 \equiv 2$ [3] puis établir une contradiction.
 - **d.** Justifier que : 3|abc.
- 2. Etude de la divisibilité de abc par 5 dans un cas particulier.

Dans cette question, n est un entier relatif.

- **a.** Vérifier que : $(n^2 1)^2 + (2n)^2 = (n^2 + 1)^2$.
- **b.** On pose : $a = n^2 1$, b = 2n et $c = n^2 + 1$; a-t-on : 5|abc ?

Corrigé

Exercice 1 Démontrer que : $\forall n \in \mathbb{N}, 7 | 23^n - 9^n + 133$.

Soit $n \in \mathbb{N}$.

Raisonnons modulo 7:

$$23 \equiv 23 - 3 \times 7 \equiv 23 - 21 \equiv 2$$
 [7]

$$9 \equiv 9 - 1 \times 7 \equiv 2 [7]$$

$$133 \equiv 133 - 20 \times 7 \equiv 133 - 140 \equiv -7 \equiv -7 + 1 \times 7 \equiv 0$$
 [7]

On en déduit que :

$$23^{n} - 9^{n} + 133 \equiv 2^{n} - 2^{n} + 0 \equiv 0$$
 [11]

On a:
$$23^n - 9^n + 133 \equiv 0$$
 [7], donc: $7|23^n - 9^n + 133$.

Conclusion: $\forall n \in \mathbb{N}, 17 | 23^n - 9^n + 133$.

Autre rédaction dite « accélérée »

Soit $n \in \mathbb{N}$, on a :

$$23^{n} - 9^{n} + 133 \equiv (23 - 3 \times 7)^{n} - (9 - 7)^{n} + 133 - 19 \times 7 \equiv 2^{n} - 2^{n} + 0 \equiv 0 [7]$$

On a :
$$23^n - 9^n + 133 \equiv 0$$
 [7], autrement dit : $7|23^n - 9^n + 133$.

Conclusion: $\forall n \in \mathbb{N}, 17|23^n - 9^n + 133$.

Exercice 2 Déterminer le reste de la division euclidienne de 8¹⁷³ par 5

$$8^1 = 8 \equiv 3 \lceil 5 \rceil$$

$$8^2 \equiv 3^2 \equiv 9 \equiv 4 \lceil 5 \rceil$$

$$8^3 = 8 \times 8^2 \equiv 3 \times 4 \equiv 12 \equiv 2 [5]$$

$$8^4 = (8^2)^2 \equiv 4^2 \equiv 16 \equiv 1[5]$$

Posons la division euclidienne de 173 par 4 :

Il en résulte que : $173 = 43 \times 4 + 1$. On a :

$$8^{173} = 8^{43 \times 4 + 1} = 8^{43 \times 4} \times 8^1 = (8^4)^{43} \times 8 \equiv 1^{43} \times 8 \equiv 1 \times 8 \equiv 8 \equiv 3$$
 [5]

$$8^{173} \equiv 3 \ [5] \text{ avec } 0 \leqslant 3 < 5$$

Le reste de la division euclidienne de 8^{173} par 5 est : 3.

Exercice 3

1. Montrer que 6 n'a pas d'inverse modulo 8.

Montrons qu'il n'existe pas $n \in \mathbb{Z}$ tel que : $6n \equiv 1$ [8].

Tableau de congruence modulo 8 :

$n \equiv$	0	1	2	3	4	5	6	7
6 <i>n</i> ≡	0	6	12	18	24	30		
	≢ 1	≢ 1	≡ 4	$\equiv 2$	$\equiv 0$	≡ 6	$\equiv 4$	
			≢ 1	≢ 1	≢ 1	≢ 1	≢ 1	≢ 1

Par disjonction de cas : $\forall n \in \mathbb{Z}$, $6n \not\equiv 1$ [8] donc **6 n'a pas d'inverse modulo 8**.

2. Soient $a \in \mathbb{Z}$ et $m \in \mathbb{N}^*$ tels qu'il existe $d \in \mathbb{Z} \setminus \{-1; 1\}$ tel que : $d \mid a$ et $d \mid m$. Montrer que a n'a pas d'inverse modulo m.

Supposons qu'il existe $b \in \mathbb{Z}$ vérifiant : $ab \equiv 1 \ [m]$, c'est-à-dire tel qu'il existe $k \in \mathbb{Z}$ vérifiant : ab = 1 + km, qui s'écrit aussi : ab - km = 1.

On a d|a et d|m donc d divise toute combinaison linéaire de a et m, en particulier : d|ab-km, c'est-à-dire : d|1. Or les seuls diviseurs de 1 sont -1 et 1, donc d=-1 ou d=1 ce qui est en contradiction avec l'hypothèse $d\in\mathbb{Z}\setminus\{-1;1\}$, il faut donc rejeter la supposition d'existence de $b\in\mathbb{Z}$ vérifiant $ab\equiv 1$ [m] autrement dit a n'est pas inversible modulo m.

Conclusion : a n'a pas d'inverse modulo m.

Exercice 4 Quel est le chiffre des unités de 3^{2025} ?

1. Raisonnons modulo 10.

$$3^1 \equiv 3 \quad [10]$$

 $3^2 = 9 \equiv 9 - 10 \equiv -1 \quad [10]$

On a:

$$3^{2025} = 3^{2 \times 1012 + 1} = 3^{2 \times 1012} \times 3^1 = (3^2)^{1012} \times 3 \equiv (-1)^{1012} \times 3 \equiv 1 \times 3 = 3$$
 [10] $3^{2025} \equiv 3$ [10] avec $0 \le 3 < 10$ donc le reste modulo 10 de 3^{2025} est 3 autrement dit le chiffre des unités de 3^{2025} est 3.

2. Montrer que $3^{10} \equiv 49$ [100] puis déterminer les deux derniers chiffres de 3^{2025} .

$$3^{1} \equiv 3 [100]$$

 $3^{2} \equiv 3^{2} \equiv 9 [100]$

$$3^5 = 3 \times 3^2 \times 3^2 \equiv 3 \times 9 \times 9 \equiv 3 \times 81 \equiv 243 \equiv 43 [100]$$

$$3^{10} = (3^5)^2 \equiv 43^2 \equiv 1849 \equiv 1849 - 18 \times 100 \equiv 1849 - 1800 \equiv 49 [100]$$

On a donc bien : $3^{10} \equiv 49 [100]$.

On a :
$$3^{20} = (3^{10})^2 \equiv 49^2 \equiv 2401 \equiv 2401 - 24 \times 100 \equiv 1$$
 [100]

On a:
$$3^{2025} = 3^{20 \times 101 + 5} = 3^{20 \times 101} \times 3^5 = (3^{20})^{101} \times 3^5 = 1 \times 43 = 43$$
 [100]

 $3^{2025} \equiv 43 \, [100]$ avec $0 \le 43 < 100$ donc le reste modulo 100 de 3^{2025} est 43

autrement dit : les deux derniers chiffres de 3^{2025} sont 4 puis 3.

Exercice 5

Soient a, b et c trois entiers relatifs tels que : $a^2 + b^2 = c^2$.

- 1. Dans cette question on se propose de démontrer que : 3|abc.
 - a. Montrer que, pour tout $x \in \mathbb{Z}$, $x^2 \equiv 0$ ou 1 [3].

Tableau de congruence modulo 3

$x \equiv$	0	1	2
$x^2 \equiv$	0^2	1 ²	2 ²
	≡ 0	≡ 1	= 4
			≡ 1

Par disjonction de cas, la dernière ligne montre que : $\forall x \in \mathbb{Z}$, $x^2 \equiv 0$ ou 1 [3].

b. Montrer que : si $a \equiv 0$ [3] ou $b \equiv 0$ [3], alors : 3|abc.

Supposons que $a \equiv 0$ [3] ou $b \equiv 0$ [3]

 $- \sin a \equiv 0$ [3], alors 3|a donc 3|abc

 $-\sin b \equiv 0$ [3], alors 3|b donc 3|abc.

Dans tous les cas on a bien : 3|abc.

c. On suppose que : $a \not\equiv 0$ [3] et $b \not\equiv 0$ [3], justifier que $a^2 + b^2 \equiv 2$ [3] puis établir une contradiction.

On suppose $a \not\equiv 0[3]$ et $b \neq 0[3]$:

 $a \not\equiv 0$ [3] revient à dire : $a \equiv 1$ ou 2 [3], donc d'après **1.** cela revient à dire $a^2 \equiv 1$ [3],

 $b \not\equiv 0$ [3] revient à dire : $b \equiv 1$ ou 2 [3], donc d'après **1.** cela revient à dire $b^2 \equiv 1$ [3] Il vient alors : $a^2 + b^2 \equiv 1 + 1 \equiv 2$ [3].

Or, $a^2 + b^2 = c^2$, donc : $c^2 \equiv 2$ [3] ce qui est <u>en contradiction</u> avec **1.** : un carré est congru à 0 ou 1 modulo 3, jamais à 2.

Supposer $a \not\equiv 0$ [3] et $b \not\equiv 0$ [3] amène donc **une contradiction**.

d. Justifier que : 3|abc.

Remarquons que, d'après la question \mathbf{c} , il est impossible d'avoir simultanément $a \not\equiv 0$ [3] et $b \not\equiv 0$ [3] donc : $a \equiv 0$ [3] ou $b \equiv 0$ [3], puis d'après \mathbf{b} . on en déduit que : $\mathbf{3} \mid abc$.

2. Etude de la divisibilité par 5 de *abc* dans un cas particulier.

Dans cette question, n est un entiers relatifs.

a. Vérifier que : $(n^2 - 1)^2 + (2n)^2 = (n^2 + 1)^2$.

On a

$$(n^2 - 1)^2 + (2n)^2 = (n^2)^2 - 2(n^2)(1) + (1)^2 + 4n^2 = n^4 - 2n^2 + 4n^2 + 1$$

= $n^4 + 2n^2 + 1 = (n^2)^2 + 2(n^2)(1) + (1)^2 = (n^2 + 1)^2$

On a donc bien : $(n^2 - 1)^2 + (2n)^2 = (n^2 + 1)^2$.

b. On pose : $a = n^2 - 1$, b = 2n et $c = n^2 + 1$; a-t-on : 5|abc? Il s'agit de savoir si : $5|(n^2 - 1)2n(n^2 + 1)$, c'est-à-dire si : $5|2n(n^4 - 1)$.

Tableau de congruence modulo 5

$n \equiv$	0	1	2	3	4
2 <i>n</i> ≡	0	2	4	6	8
		≡ 1	≡ −1	≡ 1	≡ 3
$n^4 - 1 \equiv$	$0^4 - 1$	$1^4 - 1$	$2^4 - 1$	$3^4 - 1$	$4^5 - 1$
	≡ −1	≡ 0	≡ 15	≡ 80	$\equiv (-1)^4 - 1$
			$\equiv 0$	$\equiv 0$	$\equiv 1-1$
					$\equiv 0$
$2n(n^4-1)\equiv$	$0 \times (-1)$	1×0	$(-1) \times 0$	1×0	3×0
	≡ 0	$\equiv 0$	$\equiv 0$	$\equiv 0$	$\equiv 0$

Par disjonction de cas la dernière ligne du tableau de congruence montre que : $\forall n \in \mathbb{Z}, 5 | 2n(n^4-1)$, autrement dit que : $\mathbf{5} | abc$.