Thiaude P.

**D01** Démontrons que :  $\forall n \in \mathbb{N}, 8^n - 5^n$  est un multiple de 3.

#### Corrigé

Pour tout entier naturel n, on considère la proposition  $P_n$ : «  $8^n - 5^n$ est un multiple de 3 ».

#### initialisation

Vérifions que  $P_0$ : «  $8^0 - 5^0$  est un multiple de 3 » est vraie. On a:  $8^0 - 5^0 = 1 - 1 = 0 = 0 \times 3$  donc  $8^0 - 5^0$  est un multiple de 3:  $P_0$  est donc vraie.

#### hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $8^k - 5^k$  est un multiple de 3 » est vraie (hypothèse de récurrence)

Démontrons que  $P_{k+1}$ : «  $8^{k+1} - 5^{k+1}$  est un multiple de 3 » est vraie. On a :  $8^k - 5^k$  est un multiple de 3 (H. R.) donc il existe  $\alpha \in \mathbb{Z}$  tel que  $8^k - 5^k = 3\alpha$ , d'où  $8^k = 3\alpha + 5^k$ .

On a:

$$8^{k+1} - 5^{k+1} = 8 \times 8^k - 5 \times 5^k = 8(3\alpha + 5^k) - 5 \times 5^k$$
  
=  $24\alpha + 8 \times 5^k - 5 \times 5^k = 24\alpha + 3 \times 5^k = 3(8\alpha + 5^k)$ 

Il existe  $\alpha' \in \mathbb{Z}$  tel que  $8^{k+1} - 5^{k+1} = 3\alpha'$ , à savoir  $\alpha' = 8\alpha + 5^k$ , donc  $8^{k+1} - 5^{k+1}$  est un multiple de 3, autrement dit  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{Z}$ ,  $P_n$  est vraie, autrement dit :

 $\forall n \in \mathbb{N}$ ,  $8^n - 5^n$  est un multiple de 3.

D02 Déterminer le sens de variation de  $(u_n)$  définie par et  $u_0 = 1$  et :

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{(u_n)^2}{(u_n)^2 + 1}$$

#### Corrigé

Pour tout  $x \in \mathbb{R}$  on pose :  $f(x) = \frac{x^2}{x^2+1}$ 

On a, pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$ . La fonction f est définie et dérivable sur  $\mathbb{R}$ .

Rappel: 
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
  
 $u(x) = x^2$   $u'(x) = 2x$   
 $v(x) = x^2 + 1$   $v'(x) = 2x$   
 $f'(x) = \frac{2x(x^2 + 1) - 2x(x^2)}{(x^2 + 1)^2}$   
 $f'(x) = \frac{2x^3 + 2x - 2x^3}{(x^2 + 1)^2}$   
 $f'(x) = \frac{2x}{(x^2 + 1)^2}$ 

Un carré est toujours positif ou nul donc f'(x) est du signe de son numérateur 2x, par conséquent f est croissante (strictement) sur  $\lceil 0; +\infty \lceil$ .

Pour tout  $n \in \mathbb{N}$ , on considère la proposition  $P_n : \alpha \in \mathbb{N}$ , on  $u_{n+1} \leq u_n$ 

#### initialisation

Montrons que 
$$P_0$$
: «  $0 \le u_1 \le u_0$  » est vraie.   
On a :  $u_1 = \frac{u_0^2}{u_0^2 + 1} = \frac{1^2}{1^2 + 1} = \frac{1}{2}$  et  $u_0 = 2$ 

On a donc  $0 \le u_1 \le u_0$  autrement dit  $P_0$  est vraie.

#### hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $0 \le u_{k+1} \le u_k$  » est vraie (H.R.), démontrons que  $P_{k+1}$ : «  $0 \le u_{k+2} \le u_{k+1}$  » est vraie. On a :  $0 \le u_{k+1} \le u_k$  (H. R.) Comme f est croissante sur  $[0; +\infty[$ , elle conserve le sens de la relation d'ordre sur cet intervalle, on en déduit :  $f(0) \le f(u_k + 1) \le f(u_k)$ c'est-à-dire:

$$\frac{0^2}{0^2 + 1} \le u_{(k+1)+1} \le u_k + 1$$
$$0 \le u_{k+2} \le u_{k+1}$$

Par conséquent  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que :  $\forall n \in \mathbb{N}, P_n \text{ est vraie autrement dit } : \forall n \in \mathbb{N}, 0 \leq u_{n+1} \leq u_n.$ 

On en déduit en particulier que :  $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$ , ce qui montre que la suite  $(u_n)$  est décroissante.

DO3 Soit  $(u_n)$  telle que  $u_0=1$  et  $\forall n\in\mathbb{N}$ ,  $u_{n+1}=u_n+2n+1$ . Démontrer que :  $\forall n\in\mathbb{N}$ ,  $u_n=n^2+1$ .

### Corrigé

Pour tout entier naturel n, on considère la proposition  $P_n$ : «  $u_n = n^2 + 1$  ».

## • initialisation

Vérifions que  $P_0$ : «  $u_0 = 0^2 + 1$  » est vraie.  $u_0 = 1 = 0 + 1 = 0^2 + 1$  donc  $P_0$  est vraie.

#### • <u>hérédité</u>

soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $u_k = k^2 + 1$  » est vraie (hypothèse de récurrence) démontrons que  $P_{k+1}$ : «  $u_{k+1} = (k+1)^2 + 1$  » est vraie.  $u_k = k^2 + 1$  (H.R.)

En ajoutant 2k + 1 à chaque membre, on obtient :

$$\underbrace{u_k + 2k + 1}_{u_{k+1}} = \underbrace{k^2 + 1 + 2k + 1}_{u_{k+1}}$$

$$= k^2 + 2k + 1 + 1$$
Or,  $k^2 + 2k + 1 = (k+1)^2$  donc:
$$u_{k+1} = (k+1)^2 + 1$$
, autrement dit:  $P_{k+1}$  est vraie.

#### Conclusion

Par principe de récurrence :  $\forall n \in \mathbb{N}$ ,  $P_n$  est vraie autrement dit :  $\forall n \in \mathbb{N}$ ,  $u_n = n^2 + 1$ 

D04 On considère la suite  $(u_n)$  définie par :  $u_0=2$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=\sqrt{u_n+7}$ . Démontrer que :  $\forall n\in\mathbb{N}, 2\leqslant u_n\leqslant u_{n+1}\leqslant 4$ . En déduire le sens de variation de  $(u_n)$ .

#### <u>Corrigé</u>

Pour tout  $n \in \mathbb{N}$  on considère la proposition  $P_n : \text{``} 2 \leqslant u_n \leqslant u_{n+1} \leqslant 4 \text{ ``}.$ 

#### • <u>initialisation</u>

On a :  $u_1 = \sqrt{2+7} = \sqrt{9} = 3$ . Comme  $2 \le u_0 \le u_1 \le 4$  on en déduit que  $P_0$  est vraie.

#### • hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $2 \leqslant u_k \leqslant u_{k+1} \leqslant 4$  » est vraie (hypothèse de récurrence) et montrons que  $P_{k+1}$ : «  $2 \leqslant u_{k+1} \leqslant u_{k+2} \leqslant 4$  » est vraie. On a :

 $2 \leqslant u_k \leqslant u_{k+1} \leqslant 4$  (H.R) donc en ajoutant 7 à chaque membre :

$$9 \le u_k + 7 \le u_{k+1} + 7 \le 4 + 7$$

$$9 \le u_k + 7 \le u_{k+1} + 7 \le 11$$

La fonction racine carrée est croissante sur  $[0; +\infty[$  donc :

$$\sqrt{9} \leqslant \sqrt{u_k+7} \leqslant \sqrt{u_{k+1}+7} \leqslant \sqrt{11}$$

puis en remarquant que  $\sqrt{9} = 3$  et  $\sqrt{11} \approx 3.3$ , on obtient :

$$2 \leqslant 3 \leqslant \sqrt{u_k + 7} \leqslant \sqrt{u_{k+1} + 7} \leqslant \sqrt{11} \leqslant 4$$

$$\Rightarrow 2 \leqslant u_{k+1} \leqslant u_{k+2} \leqslant 4 \quad \text{donc } P_{k+1} \text{ est vraie}$$

#### **Conclusion**

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie, autrement dit :  $\forall n \in \mathbb{N}$ ,  $2 \leqslant u_n \leqslant u_{n+1} \leqslant 4$ . En particulier :  $\forall n \in \mathbb{N}$ ,  $u_n \leqslant u_{n+1}$  donc  $(u_n)$  est croissante.

## D05 Démontrer par récurrence que :

$$1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

#### Corrigé

Pour tout  $n \in \mathbb{N}$  on considère la proposition

$$P_n : \ll 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

#### initialisation

On a d'une part :  $1^3 = 1$  et d'autre part :  $\frac{1^2(1+1)^2}{4} = \frac{1\times 4}{4} = 1$  donc  $P_1$  est vraie.

#### • hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$  : « $1^3 + \cdots + k^3 = \frac{k^2(k+1)^2}{4}$  » (hypothèse de récurrence).

Démontrons que  $P_{k+1}$  :  $(1^3 + \dots + (k+1)^3 = \frac{(k+1)^2(k+2)^2}{4})$  » est vraie.

On a: 
$$1^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$$

donc:

$$1^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4} = \frac{k^2(k+1)^2 + 4(k+1)^2(k+1)}{4}$$
$$= \frac{(k+1)^2[k^2 + 4(k+1)]}{4} = \frac{(k+1)^2(k^2 + 4k + 4)}{4}$$

Or,  $(k+2)^2 = k^2 + 4k + 4$  donc:

$$1^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}(k+2)^{2}}{4}$$

autrement dit  $P_{k+1}$  est vraie.

## Conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie, autrement dit :

$$\forall n \in \mathbb{N} \setminus \{0\}, 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

D06 Un élève obtient avec ChatGPT :

Donne sans aucun commentaire une formule pour la somme :

$$1/(1*2)+1/(2*3)+...+1/(n*(n+1))$$



$$\sum_{i=1}^n \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}$$

C'est-à-dire que :

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

Si cette affirmation est juste, la démontrer, sinon trouver un contreexemple.

#### Corrigé

Pour tout  $n \in \mathbb{N} \setminus \{0\}$  on considère la proposition  $P_n$ :

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}$$

#### • initialisation

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1 \times (1+1)} = \frac{1}{2} = 1 - \frac{1}{2} = 1 - \frac{1}{1+1}$$

donc  $P_1$  est vraie.

#### hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$  est vraie (hypothèse de récurrence), montrons que  $P_{k+1}$ :

est vraie.

On a:

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = 1 - \frac{1}{k+1} \quad (H.R.)$$

On a:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)}$$

$$= \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)((k+1)+1)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} \quad (en \ utilisant \ l'H.R.)$$

$$= 1 - \left(\frac{1}{k+1} - \frac{1}{(k+1)(k+2)}\right)$$

$$= 1 - \left(\frac{1 \times (k+2)}{(k+1)(k+2)} - \frac{1}{(k+1)(k+2)}\right)$$

$$= 1 - \frac{k+2-1}{(k+1)(k+2)}$$

$$= 1 - \frac{k+1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+2}$$

On a donc:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = 1 - \frac{1}{k+2}$$

donc  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que : pour tout  $n \in \mathbb{N} \setminus \{0\}$ ,  $P_n$  est vraie autrement dit :

$$\forall n \in \mathbb{N} \setminus \{0\}, \sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}$$

L'affirmation de ChatGPT est donc vraie.

D07 Pour tout  $n \in \mathbb{N}$ , on pose :

$$u_n = \frac{2n+3}{n+1}$$

En revenant à la définition d'une limite montrer que la suite  $(u_n)$  converge vers 2.

#### **Corrigé**

☐ Recherche

$$\begin{split} \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : n \geqslant n_0 \Rightarrow |u_n - 2| < \varepsilon ? \\ |u_n - 2| &= \left| \frac{2n + 3}{n + 1} - 2 \right| = \left| \frac{2n + 3}{n + 1} - \frac{2(n + 1)}{n + 1} \right| = \left| \frac{2n + 3 - 2(n + 1)}{n + 1} \right| \\ &= \left| \frac{2n + 3 - 2n - 2}{n + 1} \right| = \left| \frac{1}{n + 1} \right| = \frac{1}{n + 1} \\ 0 < \frac{1}{n + 1} < \varepsilon \\ n + 1 > \frac{1}{\varepsilon} \\ n > \frac{1}{\varepsilon} - 1 \end{split}$$

Notons  $n_0$  le premier entier naturel strictement plus grand que  $\frac{1}{\varepsilon}-1$ . Soit  $n\in\mathbb{N}$  tel que  $n\geqslant n_0$ , on a :

$$n \geqslant n_0 > \frac{1}{\varepsilon} - 1 \Rightarrow n > \frac{1}{\varepsilon} - 1 \Leftrightarrow n + 1 > \frac{1}{\varepsilon}$$

On a:

$$n+1 > \frac{1}{\varepsilon} > 0$$

n+1 et  $\frac{1}{\varepsilon}$  sont non nuls et de même signes donc leurs inverses sont rangés dans l'ordre inverse :

$$\frac{1}{n+1} < \varepsilon$$
 et comme  $\frac{1}{n+1} \geqslant 0$ , on a :  $\left|\frac{1}{n+1}\right| = \frac{1}{n+1}$  donc l'inégalité précédente s'écrit : 
$$\left|\frac{1}{n+1}\right| < \varepsilon$$
 
$$|u_n-2| < \varepsilon$$

On a donc:

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$  ( $n_0$  est le premier entier naturel strictement plus grand  $\operatorname{que} \frac{1}{\varepsilon} - 1$ ) tel que,  $\forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow |u_n - 2| < \varepsilon$ Cela exprime que la suite  $(u_n)$  converge vers 2.

#### <u>Remarque</u>

 $\forall x \in \mathbb{R}$ , on note E(x) l'entier <u>relatif</u> vérifiant  $E(x) \leqslant x < x + 1$ , on dit que E(x) est la partie entière de x et que E est la fonction partie entière. Dans notre exemple, on a :  $n_0 = E\left(\frac{1}{\varepsilon} - 1\right) + 1$ , qui, on pourrait le montrer, est un entier positif ou nul donc appartient bien à  $\mathbb{N}$ .

## D08 [Exercice avec recherche]

On pose  $u_0=0$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=\frac{2u_n+1}{u_n+2}$  : conjecturer  $u_n$  en fonction de n puis démontrer par récurrence cette conjecture.

#### **Corrigé**

| NORMAL<br>APP SUR : | FLOTT AU<br>+ Pour ai | TO RÉEL<br>161 | RAD MP |   |
|---------------------|-----------------------|----------------|--------|---|
| n                   | u                     |                |        |   |
| 0                   | 0                     |                |        | Г |
| 1                   | 1/2                   |                |        |   |
| 2                   | 4 5                   |                |        |   |
| 3                   | 13<br>14              |                |        |   |
| 4                   | 40<br>41              |                |        |   |
| n=0                 |                       |                |        | _ |

On obtient successivement:

$$u_{0} = 0 = \frac{0}{1} = \frac{0 \times 2}{1 \times 2} = \frac{0}{2} = \frac{3^{0} - 1}{3^{0} + 1}$$

$$u_{1} = \frac{2u_{0} + 1}{u_{0} + 2} = \frac{2(0) + 1}{0 + 2} = \frac{1}{2} = \frac{2}{4} = \frac{3^{1} - 1}{3^{1} + 1}$$

$$u_{2} = \frac{2u_{1} + 1}{u_{1} + 2} = \frac{2\left(\frac{1}{2}\right) + 1}{\frac{1}{2} + 2} = \frac{2}{\frac{5}{2}} = 2 \times \frac{2}{5} = \frac{4}{5} = \frac{8}{10} = \frac{3^{2} - 1}{3^{2} + 1}$$

$$u_{3} = \frac{2u_{2} + 1}{u_{2} + 2} = \frac{2\left(\frac{4}{5}\right) + 1}{\frac{4}{5} + 2} = \frac{\frac{8}{5} + 1}{\frac{4}{5} + 2} = \frac{\frac{13}{5}}{\frac{14}{5}} = \frac{13}{5} \times \frac{5}{14} = \frac{13 \times 5}{5 \times 14} = \frac{13}{14}$$

$$= \frac{26}{28} = \frac{3^{3} - 1}{3^{3} + 1}$$

Pour tout  $n \in \mathbb{N}$ , on considère la proposition  $P_n : \ll u_n = \frac{3^n - 1}{3^n + 1}$  ».

## initialisation

$$\frac{3^0 - 1}{3^0 + 1} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 = u_0$$

 $P_0$  est vraie

#### hérédité

soit  $k \in \mathbb{N}$  tel que  $P_k$  est vraie (hypothèse de récurrence) et démontrons que  $P_{k+1}$  est vraie.

On a:

$$u_{k+1} = \frac{2u_k + 1}{u_k + 2} = \frac{2 \times \frac{3^k - 1}{3^k + 1} + 1}{\frac{3^k - 1}{3^k + 1} + 2} \quad \text{(en utilisant H.R.)}$$

$$= \frac{\frac{2(3^k - 1)}{3^k + 1} + \frac{3^k + 1}{3^k + 1}}{\frac{3^k - 1}{3^k + 1} + \frac{2(3^k + 1)}{3^k + 1}} = \frac{\frac{2 \times 3^k - 2 + 3^k + 1}{3^k + 1}}{\frac{3^k - 1 + 2 \times 3^k + 2}{3^k + 1}}$$

$$= \frac{3 \times 3^k - 1}{3 \times 3^k + 1} = \frac{3^{k+1} - 1}{3^{k+1} + 1}$$

On a donc:

$$u_{k+1} = \frac{3^{k+1} - 1}{3^{k+1} + 1}$$

par conséquent  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que :  $\forall n \in \mathbb{N}$ ,  $P_n$  est vraie autrement dit :

$$orall n \in \mathbb{N}$$
 ,  $u_n = rac{3^n-1}{3^n+1}$ 

D09 On pose  $u_0=14$  et pour tout  $n\in\mathbb{N}$ ,

$$u_{n+1}=\frac{3}{7}u_n+4$$

- 1. Calculer  $u_1$ .
- 2. Démontrer par récurrence que pour tout  $n \in \mathbb{N}$  :

$$7 \leqslant u_{n+1} \leqslant u_n \leqslant 14$$

3. En déduire que  $(u_n)$  est convergente et déterminer sa limite  $\ell$ .

#### **Corrigé**

| n  | u      |  | Т |
|----|--------|--|---|
| 0  | 14     |  | т |
| 1  | 18     |  | 1 |
| 2  | 8.2857 |  | 1 |
| 3  | 7.551  |  | Ш |
| 4  | 7.2362 |  | Ш |
| 5  | 7.1812 |  | Ш |
| 6  | 7.0434 |  | 1 |
| 7  | 7.0186 |  | Ш |
| 8  | 7.008  |  | Ш |
| 9  | 7.0034 |  |   |
| 10 | 7.0015 |  | L |

**1.** On a:

$$u_1 = \frac{3}{7}u_0 + 4 = \frac{3}{7}(14) + 4 = 6 + 4 = 10$$
  
 $u_1 = \mathbf{10}$ 

**2.** Pour tout  $n \in \mathbb{N}$  on considère la proposition

$$P_n$$
: «  $7 \le u_{n+1} \le u_n \le 14$  »

• initialisation

 $u_0 = 14$ ,  $u_1 = 10$ , donc:  $7 \le u_1 \le u_0 \le 14$ :  $P_0$  est vraie.

• hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$  : «  $7 \le u_{k+1} \le u_k \le 14$  » est vraie (hypothèse de récurrence),

Démontrons que  $P_{k+1}$  : «7  $\leqslant u_{k+2} \leqslant u_{k+1} \leqslant 14$  » est vraie.

On a :  $7 \le u_{k+1} \le u_k \le 14$  (H.R.), en multipliant par  $\frac{3}{7} > 0$  on obtient :

$$\frac{3}{7} \times 7 \leqslant \frac{3}{7} \times u_{k+1} \leqslant \frac{3}{7} \times u_k \leqslant \frac{3}{7} \times 14$$

$$3 \leqslant \frac{3}{7} u_{k+1} \leqslant \frac{3}{7} u_k \leqslant 6$$

puis en ajoutant 4:

$$3 + 4 \leqslant \frac{3}{7}u_{k+1} + 4 \leqslant \frac{3}{7}u_k + 4 \leqslant 6 + 4$$
$$7 \leqslant u_{k+2} \leqslant u_{k+1} \leqslant 10$$

Or  $10 \leqslant 14$  donc  $7 \leqslant u_{k+2} \leqslant u_{k+1} \leqslant 14$ :  $P_{k+1}$  est vraie.

#### **Conclusion**

Il résulte des deux points précédents et du principe de récurrence que pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie, i.e. :  $\forall n \in \mathbb{N}$ ,  $7 \le u_{n+1} \le u_n \le 14$ .

- **3.** On a montré que :  $\forall n \in \mathbb{N}, 7 \leqslant u_{n+1} \leqslant u_n \leqslant 14$  on en déduit que :
  - $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$  donc la suite  $(u_n)$  est décroissante
  - $\forall n \in \mathbb{N}, 7 \leqslant u_n$  donc la suite  $(u_n)$  est minorée par 7

On en déduit, d'après le théorème de convergence monotone, que la suite  $(u_n)$  est convergente.

On note  $\ell$  la limite de la suite  $(u_n)$ .

On a : 
$$\lim_{n \to +\infty} (n+1) = +\infty$$
, donc :  $\lim_{n \to +\infty} u_{n+1} = \lim_{N \to +\infty} u_N = \ell$ .

D'autre part :  $\lim_{n\to+\infty} \frac{3}{7}u_n = \frac{3}{7}\ell$ 

puis par limite d'une somme :

$$\lim_{n \to +\infty} \left( \frac{3}{7} u_n + 4 \right) = \frac{3}{7} \ell + 4$$

par passage dans:

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{3}{7}u_n + 4$$

on obtient:

$$\ell = \frac{3}{7}\ell + 4 \Leftrightarrow \ell - \frac{3}{7}\ell = 4 \Leftrightarrow \frac{4}{7}\ell = 4 \Leftrightarrow \ell = 4 \times \frac{7}{4} \Leftrightarrow \ell = 7$$

Conclusion :  $\ell = 7$ .

D10 On se donne deux réels a et b,  $a \neq 1$ .

On considère la suite  $(u_n)$  de premier terme  $u_0$  telle que, pour tout entier naturel  $n:u_{n+1}=au_n+b$ .

Pour tout  $n \in \mathbb{N}$ , on pose :

$$v_n = u_n - \frac{b}{1-a}$$

- ullet démontrer que  $(v_n)$  est géométrique, préciser son premier terme et sa raison
- ullet exprimer  $v_n$  en fonction de  $n,n\in\mathbb{N}$
- ullet en déduire que, pour tout  $n\in\mathbb{N}$  :

$$u_n = \left(u_0 - \frac{b}{1-a}\right) \times a^n + \frac{b}{1-a}$$

ullet on suppose que  $a\in ]-1;1[$  , montre que  $(u_n)$  est convergente et préciser sa limite

$$u_{0}a - \frac{ab}{1-a} + \frac{b}{1-a} = u_{0}a - \frac{ab-b}{1-a} = u_{0}a - \frac{b(a-1)}{1-a} = au_{0} + b = u_{1}$$

$$v_{n+1} = u_{n+1} - \frac{b}{1-a} = au_{n} + b - \frac{b}{1-a} = au_{n} + \frac{b(1-a)}{1-a} - \frac{b}{1-a}$$

$$= au_{n} + \frac{b-ab-b}{1-a} = au_{n} - \frac{ab}{1-a} = a\left(u_{n} - \frac{b}{1-a}\right) = av_{n}$$

$$v_{0} = u_{0} - \frac{b}{1-a}$$

$$v_{n} = v_{0} \times q^{n} = \left(u_{0} - \frac{b}{1-a}\right) \times a^{n}$$

$$u_{n} = v_{n} + \frac{b}{1-a} = \left(u_{0} - \frac{b}{1-a}\right) \times a^{n} + \frac{b}{1-a}$$

#### Conclusion

$$\forall n \in \mathbb{N}, u_n = \left(u_0 - \frac{b}{1-a}\right) \times a^n + \frac{b}{1-a}$$

ullet on suppose que  $a\in \ ]-1;1[$  , montre que  $(u_n)$  est convergente et préciser sa limite

 $a \in ]-1;1[$ , autrement dit -1 < a < 1, or si -1 < q < 1 alors  $\lim_{n \to +\infty} q^n = 0$  donc  $\lim_{n \to +\infty} a^n = 0$  puis par limite d'un produit :

$$\lim_{n \to +\infty} \left[ \left( u_0 - \frac{b}{1-a} \right) \times a^n \right] = 0$$

puis par limite d'une somme

$$\lim_{n \to +\infty} \left[ \left( u_0 - \frac{b}{1-a} \right) \times a^n + \frac{b}{1-a} \right] = \frac{b}{1-a}$$

Conclusion

$$\lim_{n\to+\infty}u_n=\frac{b}{1-a}$$

**D11** On considère les suites  $(u_n)$  et  $(v_n)$  définies par leurs premiers termes respectifs  $u_0 = 5$ ,  $v_0 = 1$  et, pour tout n entier naturel :

$$u_{n+1} = \frac{4}{5}u_n + \frac{1}{5}v_n$$
 et  $v_{n+1} = \frac{1}{5}u_n + \frac{4}{5}v_n$ 

- 1. Déterminer  $u_1$  et  $v_1$  puis  $u_2$  et  $v_2$ .
- 2. Pour tout *n* entier naturel on pose :

$$s_n = u_n + v_n$$
 et  $d_n = u_n - v_n$ 

- a. Conjecturer l'expression de  $s_n$ ,  $n \in \mathbb{N}$ , puis démontrer cette conjecture.
- b. Montrer que  $(d_n)$  est géométrique et préciser sa raison puis exprimer  $d_n$  en fonction de n.
- c. Déduire des questions précédentes  $u_n$  et  $v_n$  en fonction de n.
- d. Montrer que  $(u_n)$  et  $(v_n)$  sont convergentes et ont la même limite  $\ell$ , à préciser.

#### **Corrigé**

 $u_0 = 5$ ,  $v_0 = 1$  et, pour tout n entier naturel :

$$u_{n+1} = \frac{4}{5}u_n + \frac{1}{5}v_n$$
 et  $v_{n+1} = \frac{1}{5}u_n + \frac{4}{5}v_n$ 

1. Déterminer  $u_1$  et  $v_1$  puis  $u_2$  et  $v_2$ .

$$u_{1} = \frac{4}{5}u_{0} + \frac{1}{5}v_{0} = \frac{4}{5}(5) + \frac{1}{5}(1) = \frac{20}{5} + \frac{1}{5} = \frac{21}{5}$$

$$v_{1} = \frac{1}{5}u_{0} + \frac{4}{5}v_{1} = \frac{1}{5}(5) + \frac{4}{5}(1) = \frac{5}{5} + \frac{4}{5} = \frac{9}{5}$$

$$u_{2} = \frac{4}{5} \times \frac{21}{5} + \frac{1}{5} \times \frac{9}{5} = \frac{84}{25} + \frac{9}{25} = \frac{84 + 9}{25} = \frac{93}{25}$$

$$v_{2} = \frac{1}{5} \times \frac{21}{5} + \frac{4}{5} \times \frac{9}{5} = \frac{21}{25} + \frac{36}{25} = \frac{57}{25}$$

- 2. Pour tout n entier naturel on pose :  $s_n = u_n + v_n$  et  $d_n = u_n v_n$ .
  - a. Conjecturer la nature de  $(s_n)$  puis la démontrer.

$$s_0 = u_0 + v_0 = 5 + 1 = 6$$

$$s_1 = u_1 + v_1 = \frac{21}{5} + \frac{9}{5} = \frac{30}{5} = 6$$

$$s_2 = u_2 + v_2 = \frac{93}{25} + \frac{57}{25} = \frac{150}{25} = \frac{25 \times 6}{25 \times 1} = 6$$

On constate que  $s_0 = s_1 = s_2 = 6$ . Pour tout  $n \in \mathbb{N}$ , on considère la proposition  $P_n : \ll s_n = 6$  ».

#### • initialisation

On a déjà obtenu  $s_0 = 6$  donc  $P_0$  est vraie.

#### • hérédité

Soit  $k\in\mathbb{N}$  tel que  $P_k$  : «  $s_k=6$  » (hypothèse de récurrence) est vraie et démontrons que  $P_{k+1}$  : «  $s_{k+1}=6$  » est vraie. On a :

$$s_{k+1}=u_{k+1}+v_{k+1}=\frac{4}{5}u_k+\frac{1}{5}v_k+\frac{1}{5}u_k+\frac{4}{5}v_k=u_k+v_k=s_k$$
  
Or, d'après l'hypothèse de récurrence,  $s_k=6$ , donc on obtient  $s_{k+1}=6$  par conséquent  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie donc :  $\forall n \in \mathbb{N}$ ,  $s_n = 6$ .

b. Montrer que  $(d_n)$  est géométrique et préciser sa raison puis exprimer  $d_n$  en fonction de n.

On a:

$$d_{n+1} = u_{n+1} - v_{n+1} = \frac{4}{5}u_n + \frac{1}{5}v_n - \left(\frac{1}{5}u_n + \frac{4}{5}v_n\right)$$

$$= \frac{4}{5}u_n - \frac{1}{5}u_n + \frac{1}{5}v_n - \frac{4}{5}v_n = \frac{3}{5}u_n - \frac{3}{5}v_n = \frac{3}{5}(u_n - v_n)$$

$$= \frac{3}{5}d_n$$

Pour tout  $n\in\mathbb{N}$ ,  $d_{n+1}=\frac{3}{5}d_n$  donc la suite  $(d_n)$  est géométrique de raison  $\frac{3}{5}$ , par conséquent, pour tout  $n\in\mathbb{N}$ :

$$d_n = d_0 \times q^n = 4 \times \left(\frac{3}{5}\right)^n$$

Résumons:

$$orall n \in \mathbb{N}$$
,  $d_n = 4 imes \left(rac{3}{5}
ight)^n$ 

#### c. Déduire des questions précédente $u_n$ et $v_n$ en fonction de n.

Soit  $n \in \mathbb{N}$ , d'après ce qui précède :

$$\begin{cases} u_n + v_n = 6 \\ u_n - v_n = 4 \times \left(\frac{3}{5}\right)^n \Leftrightarrow \begin{cases} u_n + v_n = 6 \\ 2v_n = 6 - 4 \times \left(\frac{3}{5}\right)^n \end{cases} \\ \Leftrightarrow \begin{cases} u_n + v_n = 6 \\ v_n = 3 - 2 \times \left(\frac{3}{5}\right)^n \Leftrightarrow \begin{cases} u_n = 6 - \left(3 - 2 \times \left(\frac{3}{5}\right)^n\right) \\ v_n = 3 - 2 \times \left(\frac{3}{5}\right)^n \end{cases} \\ \Leftrightarrow \begin{cases} u_n = 3 + 2 \times \left(\frac{3}{5}\right)^n \\ v_n = 3 - 2 \times \left(\frac{3}{5}\right)^n \end{cases} \end{cases}$$

Conclusion:

$$orall n \in \mathbb{N}$$
 ,  $egin{cases} u_n = 3 + 2 imes \Big(rac{3}{5}\Big)^n \ v_n = 3 - 2 imes \Big(rac{3}{5}\Big)^n \end{cases}$ 

# d. Montrer que $(u_n)$ et $(v_n)$ sont convergentes et ont même limite $\ell$ à préciser

$$-1 < \frac{3}{5} < 1$$
, or, si  $-1 < q < 1$  alors  $\lim_{n \to +\infty} q^n = 0$ 

donc: 
$$\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$$
, puis  $\lim_{n \to +\infty} \left(2 \times \left(\frac{3}{5}\right)^n\right) = 0$ 

Par limite d'une somme on en déduit :

$$\lim_{n \to +\infty} \left( 3 + 2 \times \left( \frac{3}{5} \right)^n \right) = 3$$

et par limite d'une différence :

$$\lim_{n \to +\infty} \left( 3 - 2 \times \left( \frac{3}{5} \right)^n \right) = 3$$

Conclusion

$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=3$$

**D12**  $(u_n)$  est définie par  $u_0=6$  et pour tout  $n\in\mathbb{N}$  :

$$u_{n+1}=\frac{u_n+12}{u_n+2}$$

Pour tout *n* entier naturel on pose :

$$v_n = \frac{u_n - 3}{u_n + 4}$$

- calculer  $u_1$  et  $u_2$ : la suite  $(u_n)$  est-elle monotone ?
- ullet calculer  $v_0$  sous forme de fraction irréductible
- montrer que  $(v_n)$  est géométrique, préciser sa raison
- exprimer  $v_n$  puis  $u_n$  en fonction de n (on admet que  $\forall n \in \mathbb{N}, v_n \neq 1$ )
- déterminer la limite éventuelle de  $(u_n)$

#### Corrigé

$$u_0=6 \hspace{0.1cm}$$
 et  $\hspace{0.1cm} orall n \in \mathbb{N}$ ,  $u_{n+1}=rac{u_n+12}{u_n+2}$ ,  $v_n=rac{u_n-3}{u_n+4}$ 

• calculer  $u_1$  et  $u_2$ : la suite  $(u_n)$  est-elle monotone ?

$$u_1 = \frac{u_0 + 12}{u_0 + 2} = \frac{6 + 12}{6 + 2} = \frac{18}{8} = \frac{9}{4}$$

$$u_2 = \frac{u_1 + 12}{u_1 + 2} = \dots = \frac{57}{17}$$

 $u_1 < u_0$  donc  $(u_n)$  n'est pas croissante  $u_2 > u_1$  donc  $(u_n)$  n'est pas décroissante La suite  $(u_n)$  n'est ni croissante, ni décroissante donc  $(u_n)$  n'est pas monotone

ullet calculer  $v_0$  sous forme de fraction irréductible

$$v_0 = \frac{u_0 - 3}{u_0 + 4} = \frac{6 - 3}{6 + 4} = \frac{3}{10}$$

• montrer que  $(v_n)$  est géométrique et préciser sa raison Soit  $n \in \mathbb{N}$ , on a :

$$v_{n+1} = \frac{u_{n+1} - 3}{u_{n+1} + 4} = \frac{\frac{u_n + 12}{u_n + 2} - 3}{\frac{u_n + 12}{u_n + 2} + 4} = \frac{\frac{u_n + 12}{u_n + 2} - \frac{3(u_n + 2)}{u_n + 2}}{\frac{u_n + 12}{u_n + 2} + \frac{4(u_n + 2)}{u_n + 2}}$$

$$= \frac{\frac{u_n + 12 - 3(u_n + 2)}{u_n + 2}}{\frac{u_n + 12 + 4(u_n + 2)}{u_n + 2}} = \frac{u_n + 12 - 3u_n - 6}{u_n + 2} \times \frac{u_n + 2}{u_n + 12 + 4u_n + 8}$$
$$= \frac{-2u_n + 6}{5u_n + 20} = \frac{-2(u_n - 3)}{5(u_n + 4)} = -\frac{2}{5} \times \frac{u_n - 3}{u_n + 4} = -\frac{2}{5}v_n$$

Pour tout  $n \in \mathbb{N}$ , on a :  $v_{n+2} = -\frac{2}{5}v_n$  donc  $(v_n)$  est géométrique de raison  $\left(-\frac{2}{5}\right)$ .

• exprimer  $v_n$  puis  $u_n$  en fonction de n Soit  $n \in \mathbb{N}$ .

 $(v_n)$  est géométrique donc  $v_n = v_0 \times q^n$ , or  $v_0 = \frac{3}{10}$  et  $q = -\frac{2}{5}$  donc

 $v_n = \frac{3}{10} \times \left(-\frac{2}{5}\right)^n$ 

Or,

$$v_{n} = \frac{u_{n} - 3}{u_{n} + 4}$$

$$v_{n}(u_{n} + 4) = u_{n} - 3$$

$$u_{n} \times v_{n} + 4v_{n} = u_{n} - 3$$

$$u_{n} \times v_{n} - u_{n} = -3 - 4v_{n}$$

$$u_{n}(v_{n} - 1) = -3 - 4v_{n}$$

$$u_{n} = \frac{-3 - 4v_{n}}{v_{n} - 1}$$

$$u_{n} = \frac{3 + 4v_{n}}{1 - v_{n}} = \frac{3 + 4 \times \frac{3}{10} \times \left(-\frac{2}{5}\right)^{n}}{1 - \frac{3}{10} \times \left(-\frac{2}{5}\right)^{n}}$$

$$\forall n \in \mathbb{N}, u_{n} = \frac{3 + \frac{6}{5} \times \left(-\frac{2}{5}\right)^{n}}{1 - \frac{3}{10} \times \left(-\frac{2}{5}\right)^{n}}$$

<u>Vérification</u> Pour n = 2, cette formule donne :

$$u_2 = \frac{3 + \frac{12}{10} \times \frac{4}{25}}{1 - \frac{3}{10} \times \frac{4}{25}} = \frac{57}{17} (calculatrice)$$

• montrer que  $(u_n)$  est convergente et préciser sa limite

$$-1 < -\frac{2}{5} < 1$$
 or, si  $-1 < q < 1$  alors  $\lim_{n \to +\infty} q^n = 0$ 

donc  $\lim_{n\to+\infty} \left(-\frac{2}{5}\right)^n = 0$ , par conséquent :

$$\lim_{n \to +\infty} \left( \frac{6}{5} \times \left( -\frac{2}{5} \right)^n \right)$$

puis:

$$\lim_{n \to +\infty} \left( 3 + \frac{6}{5} \times \left( -\frac{2}{5} \right)^n \right) = 3$$

De même, on montrerait que :

$$\lim_{n \to +\infty} \left( 1 - \frac{3}{10} \times \left( -\frac{2}{5} \right)^n \right) = 1$$

donc par limite d'un quotient :

$$\lim_{n \to +\infty} \frac{3 + \frac{6}{5} \times \left(-\frac{2}{5}\right)^n}{1 - \frac{3}{10} \times \left(-\frac{2}{5}\right)^n} = 3$$

Finalement:

$$\lim_{n\to+\infty}u_n=3$$

.

.

D13 On pose  $u_0=1$  et, pour tout n entier naturel :

$$u_{n+1}=\frac{3u_n+1}{u_n+1}$$

1. Soit f la fonction définie sur ]-1;  $+\infty$  [ par :

$$f(x) = \frac{3x+1}{x+1}$$

Déterminer le sens de variation de f sur ]-1;  $+\infty[$ .

- 2. Calculer  $u_1$ .
- 3. Démontrer par récurrence que, pour tout  $n \in \mathbb{N}$  :

$$1 \leqslant u_n \leqslant u_{n+1} \leqslant 3$$

4. En déduire que  $(u_n)$  est convergente et déterminer sa limite.

#### **Corrigé**

| NORMAL FLOTT AUTO RÉEL RAD MP<br>Deuxième condition si nécessaire <b>n</b> | NORMAL<br>APP SUR          | FLOTT AL<br>+ POUR △                                            | RAD MP | 0 |
|----------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|--------|---|
| Graph1 Graph2 Graph3 TYPE: SUITE(7) SUITE(7+1) SUITE(7+2)                  | ກ<br>0                     | 1<br>2                                                          |        |   |
| nMin=0  .u(n+1)=(3*u(n)+1)/(u(n)+) u(0)=1 u(1)=■ .v(n+1)=                  | 2<br>3<br>4<br>5<br>6<br>7 | 2.3333<br>2.4<br>2.4118<br>2.4138<br>2.4141<br>2.4142<br>2.4142 |        |   |
| ∨(0)=<br>∨(1)=<br>■\w(n+1)=                                                | 9<br>10<br>n=0             | 2.4142<br>2.4142                                                |        |   |

**1.** f est quotient de deux fonction affines donc elle est dérivable sur son ensemble de définition, c'est-à-dire sur ]-1;  $+\infty$  [

$$f(x) = \frac{3x+1}{x+1}$$
Rappel:  $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$ 

$$u(x) = 3x+1 \quad u'(x) = 3$$

$$v(x) = x+1 \quad v'(x) = 1$$

$$f'(x) = \frac{3(x+1) - 1(3x+1)}{(x+1)^2}$$

$$f'(x) = \frac{3x+3-3x-1}{(x+1)^2}$$

$$f'(x) = \frac{2}{(x+1)^2}$$

Pour tout  $x \in ]-1; +\infty[, f'(x) > 0 \text{ donc } f \text{ est (strictement)}$  croissante sur  $]-1; +\infty[$ .

**2.** On a:

$$u_1 = \frac{3u_0 + 1}{u_0 + 1} = \frac{3(1) + 1}{1 + 1} = \frac{4}{2} = 2$$
  
 $u_1 = 2$ 

**3.** Pour tout  $n \in \mathbb{N}$  on considère la proposition

$$P_n$$
: «  $1 \le u_n \le u_{n+1} \le 3$  »

initialisation

On a :  $1 \le 1 \le 2 \le 3$ , or  $u_0 = 1$  et  $u_1 = 2$ , donc  $1 \le u_0 \le u_1 \le 3$  par conséquent  $P_0$  est vraie.

hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : « $1 \le u_k \le u_{k+1} \le 3$  » est vraie (hypothèse de récurrence) et démontrons que  $P_{k+1}$ : « $1 \le u_{k+1} \le u_{k+2} \le 3$  » est vraie.

Les nombres 1,  $u_k$ ,  $u_{k+1}$  et 3 appartiennent tous à l'intervalle  $]-1;+\infty[$  sur lequel f est croissante donc conserve le sens de la relation d'ordre.

On a :  $1 \le u_k \le u_{k+1} \le 3$  donc :  $f(1) \le f(u_k) \le f(u_{k+1}) \le f(3)$  Or,

$$f(1) = \frac{3(1)+1}{1+1} = \frac{4}{2} = 2 \qquad f(u_k) = \frac{3u_k+1}{u_k+1} = u_{k+1}$$
$$f(u_{k+1}) = \frac{3u_{k+1}+1}{u_{k+1}+1} = u_{k+2} \quad f(3) = \frac{3(3)+1}{3+1} = \frac{10}{4} = 2,5$$

On a obtient donc :  $2 \leqslant u_{k+1} \leqslant u_{k+2} \leqslant 2,5$ 

donc:  $1 \le 2 \le u_{k+1} \le u_{k+2} \le 2,5 \le 3$  d'où :  $1 \le u_{k+1} \le u_{k+2} \le 3$  par conséquent  $P_{k+1}$  est vraie.

#### **Conclusion**

Il résulte des deux points précédents et du principe de récurrence que,  $\forall n \in \mathbb{N}, P_n$  est vraie, autrement dit :  $\forall n \in \mathbb{N}, 1 \leqslant u_n \leqslant u_{n+1} \leqslant 3$ .

#### 4. En déduire que $(u_n)$ est convergente et déterminer sa limite.

- pour tout  $n \in \mathbb{N}$ ,  $u_n \leq u_{n+1}$  donc  $(u_n)$  est croissante
- pour tout  $n \in \mathbb{N}$ ,  $u_n \le 3$  donc  $(u_n)$  est majorée par la constante 3

Il est important de traiter <u>séparément</u> les deux conséquences de «  $\forall n \in \mathbb{N}, 1 \leq u_n \leq u_{n+1} \leq 3$  ».

La suite  $(u_n)$  est croissante et majorée donc d'après le théorème de convergence monotone elle est convergente.

Notons  $\ell$  sa limite et rappelons que, pour tout  $n \in \mathbb{N}$ :

$$u_{n+1} = \frac{3u_n + 1}{u_n + 1} \ (*)$$

On a d'une part :  $\lim_{n\to+\infty}(n+1)=+\infty$  donc

$$\lim_{n\to+\infty}u_{n+1}=\lim_{N\to+\infty}u_N=\ell$$

et d'autre part, on a :

$$\lim_{n\to+\infty} (3u_n+1) = 3\ell+1 \text{ et } \lim_{n\to+\infty} (u_n+1) = \ell+1$$

donc par limite d'un quotient :

$$\lim_{n\to+\infty}\frac{3u_n+1}{u_n+1}=\frac{3\ell+1}{\ell+1}$$

Par passage à la limite de l'égalité (\*) on obtient :

$$\ell = \frac{3\ell + 1}{\ell + 1}$$

$$\ell(\ell + 1) = 3\ell + 1$$

$$\ell^2 + \ell - 3\ell - 1 = 0$$

$$\ell^2 - 2\ell - 1$$

donc  $\ell$  est solution de l'équation  $x^2 - 2x - 1 = 0$ .

 $x^2 - 2x - 1$  est de la forme  $ax^2 + bx + c$  avec a = 1, b = -2, c = -1, de discriminant

$$\Delta = b^2 - 4ac = (-2)^2 - 4(1)(-1) = 4 + 4 = 8$$
$$\sqrt{\Delta} = \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$$

 $\Delta > 0$  donc  $x^2 - 2x - 1$  admet deux racines réelles distiinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{+2 - 2\sqrt{2}}{2(1)} = \frac{2(1 - \sqrt{2})}{2} = 1 - \sqrt{2} \approx -0.4$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{+2 + 2\sqrt{2}}{2(1)} = \frac{2(1 + \sqrt{2})}{2} = 1 + \sqrt{2} \approx 2.4$$

Or, par passage à la limite des inégalités de la question **3.** on obtient  $1 \le \ell \le 3$  donc  $x_1$  est rejeté et  $x_2$  est accepté.

Finalement :  $\ell = 1 + \sqrt{2}$ .

D14 Pour tout  $n \in \mathbb{N}$ , on pose :

$$u_n = \frac{4n+3}{n+1}$$

En revenant à la définition d'une limite démontrer que  $\lim_{n o +\infty} u_n = 4$ .

#### **Corrigé**

Question:

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que} : \forall n \in \mathbb{N}, si \ n \geqslant n_0 \text{ alors } |u_n - 4| < \varepsilon \text{ }$ ?

$$|u_n - 4| = \left| \frac{4n+3}{n+1} - 4 \right| = \left| \frac{4n+3}{n+1} - \frac{4(n+1)}{n+1} \right| = \left| \frac{4n+3-4(n+1)}{n+1} \right|$$
$$= \left| \frac{4n+3-4n-4}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \left| -\frac{1}{n+1} \right|$$

Or, pour x < 0 on a : |x| = -x donc :

$$\left| -\frac{1}{n+1} \right| = -\left( -\frac{1}{n+1} \right) = \frac{1}{n+1}$$

Dire :  $|u_n-4|<\varepsilon$  revient donc à dire :  $\frac{1}{n+1}<\varepsilon$ , c'est-à-dire  $n+1>\frac{1}{\varepsilon}$  ou encore  $n>\frac{1}{\varepsilon}-1$ .

Notons  $n_0$  le premier entier naturel strictement plus grand que  $\frac{1}{\varepsilon}-1$ .

Soit  $n \in \mathbb{N}$  tel que  $n \geqslant n_0$ : on a :  $n \geqslant n_0$  et  $n_0 > \frac{1}{\varepsilon} - 1$  donc  $n > \frac{1}{\varepsilon} - 1$  donc  $n + 1 > \frac{1}{\varepsilon} > 0$  puis  $\frac{1}{n+1} < \varepsilon$  et enfin  $|u_n - 4| < \varepsilon$ .

#### <u>Résumons</u>

$$\begin{split} \forall \varepsilon > 0, & \text{ il existe } n_0 \in \mathbb{N}, n_0 \text{ est le plus petit entier naturel strictement plus} \\ & \text{grand que } \frac{1}{\varepsilon} - 1 \text{ tel que } : \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow |u_n - 4| < \varepsilon \\ & \text{ce qui montre que } \lim_{n \to +\infty} u_n = 4. \end{split}$$

D15 On pose  $u_0=10$  et, pour tout  $n\in\mathbb{N}:u_{n+1}=1,5u_n+3$ .

- 1. Calculer  $u_1$  puis démontrer par récurrence que  $(u_n)$  est croissante.
- 2. Écrire un programme Python qui demande à l'utilisateur d'entrer un réel A puis affiche le premier entier naturel  $n_0$  tel que, pour tout entier naturel n, si  $n \geqslant n_0$  alors  $u_n > A$ . (en admettant qu'un tel  $n_0$  existe)
- 3. Démontrer par récurrence que :  $\forall n \in \mathbb{N}, u_n = 16 \times 1, 5^n 6$ .
- 4. En déduire que :

 $\forall A \in \mathbb{R}$ ,  $\exists \ n_0 \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n > A$ 

#### **Corrigé**

 $u_0=10$  et  $\forall n\in\mathbb{N}$ ,  $u_{n+1}=1$ ,  $5u_n+3$ 

| NORMAL FLOTT AUTO RÉEL RAD MP<br>Deuxième condition si nécessaire | NORMAL<br>App sur : |                            | ITO RÉEL<br>Tb1 | RAD MP | Ū        |
|-------------------------------------------------------------------|---------------------|----------------------------|-----------------|--------|----------|
| Graph1 Graph2 Graph3 TYPE: SUITE(n) SUITE(n+1) SUITE(n+2)         | 7)<br>0             | 10<br>18                   |                 |        | $\vdash$ |
| nMin=0<br>■:u(n+1)■1.5*u(n)+3                                     | 3                   | 30<br>48<br>75             |                 |        |          |
| u(0)=10<br>u(1)=                                                  | 5                   | 115.5<br>176.25            |                 |        |          |
| ■ ``\('n+1')=<br>\('0')=                                          | 8                   | 267.38<br>404.06<br>609.09 |                 |        |          |
| ∨(1)=<br>■\w(n+1)=                                                | n=0                 | 916.64                     |                 |        | _        |

1. Calculer  $u_1$  puis démontrer par récurrence que  $(u_n)$  est croissante.

$$u_1 = 1.5 \times u_0 + 3 = 1.5 \times 10 + 3 = 15 + 3 = 18$$
  
 $u_1 = 18$ 

Pour tout  $n \in \mathbb{N}$ , on considère la proposition  $P_n : \langle u_n \leq u_{n+1} \rangle$ 

#### <u>initialisation</u>

On a :  $10 \leqslant 18$ , or  $u_0 = 10$  et  $u_1 = 18$ ,donc  $u_0 \leqslant u_1 : P_0$  est vraie.

#### <u>hérédité</u>

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $u_k \le u_{k+1}$  » est vraie (hypothèse de récurrence), montrons que  $P_{k+1}$ : «  $u_{k+1} \le u_{k+2}$  » est vraie. On a :  $u_k \le u_{k+1}$  (hypothèse de récurrence)

en multipliant par 1.5>0 on obtient :  $1.5u_k\leqslant 1.5u_{k+1}$  puis en ajoutant  $3:1.5u_k+3\leqslant 1.5u_{k+1}+3$  c'est-à-dire :  $u_{k+1}\leqslant u_{k+2}$  donc  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie autrement dit :  $\forall n \in \mathbb{N}$ ,  $u_n \leqslant u_{n+1}$  ce qui montre que la suite  $(u_n)$  est croissante

2. Programme Python qui demande à l'utilisateur d'entrer un réel A puis affiche le premier entier naturel  $n_0$  tel que, pour tout  $n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n > A$  (en admettant qu'un tel  $n_0$  existe)

3. Démontrer par récurrence que :  $\forall n \in \mathbb{N}$ ,  $u_n = 16 \times 1$ ,  $5^n - 6$ .

 $\forall n \in \mathbb{N}$  on considère la proposition  $P_n$ : «  $u_n = 16 \times 1.5^n - 6$  »

• initialisation

$$16 \times 1,5^{0} - 6 = 16 \times 1 - 6 = 10 = u_{0}$$
:  $P_{0}$  est vraie

• <u>hérédité</u>

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $u_k = 16 \times 1,5^k - 6$  » est vraie (hypothèse de récurrence), montrons que  $P_{k+1}$ : «  $u_{k+1} = 16 \times 1,5^{k+1} - 6$  » est vraie.

On a :  $u_k = 16 \times 1,5^k - 6$  (H.R.). En multipliant pat 1,5 on obtient :  $1,5u_k = 1,5(16 \times 1,5^k - 6)$  $1,5u_k = 16 \times 1,5^{k+1} - 1,5 \times 6$ 

 $1.5u_k = 16 \times 1.5^{k+1} - 9$ 

Puis en ajoutant 3:

$$1.5u_k + 3 = 16 \times 1.5^{k+1} - 9 + 3$$

$$u_{k+1} = 16 \times 1,5^{k+1} - 6$$

Par conséquent  $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie autrement dit :

$$\forall n \in \mathbb{N}$$
,  $u_n = 16 \times 1$ ,  $5^n - 6$ 

#### 4. En déduire que :

 $\forall A \in \mathbb{R}$ , il existe  $n_0 \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n > A$ .

1,5 > 1 or, si q > 1 alors  $\lim_{n \to +\infty} q^n = +\infty$  donc  $\lim_{n \to +\infty} 1,5^n = +\infty$  d'où  $\lim_{n \to +\infty} (16 \times 1,5^n) = +\infty$  puis par limite d'une différence :

 $\lim_{n \to +\infty} (16 \times 1, 5^n - 6) = 0 \text{ autrement dit} : \lim_{n \to +\infty} u_n = +\infty.$ 

En revenant à la définition de la divergence vers  $+\infty$  on obtient :

 $\forall A \in \mathbb{R}$ , il existe  $n_0 \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n > A$ ce qui est précisément ce que nous devions justifier.

## D16 [d'après bac]

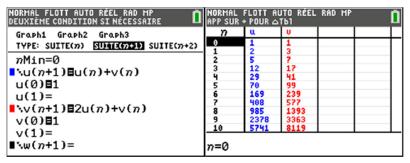
On pose  $u_0=v_0=1$  et :  $\forall n\in\mathbb{N}$ ,  $u_{n+1}=u_n+v_n$  et  $v_{n+1}=2u_n+v_n$ . On admet que pour tout  $n\in\mathbb{N}$ ,  $u_n\geqslant 1$  et  $v_n\geqslant 1$ .

- **1.** Calculer  $u_1$  et  $v_1$ .
- **2.** Déterminer le sens de variation de  $(u_n)$ .
- **3.** Démontrer par récurrence que :  $\forall n \in \mathbb{N}$ ,  $u_n \geqslant n+1$ . En déduire la limite de  $(u_n)$ .
- **4.** Justifier que : « pour tout réel A, il existe  $n_0 \in \mathbb{N}$  tel que : pour tout  $n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n \geqslant A$  ». Le programme Python suivant demande d'entrer A puis détermine le plus petit entier naturel  $n_0$  :

Recopier sur la copie, en les complétant, les lignes 4 et 5 puis à l'aide de ce programme, déterminer le plus petit  $n_0$  correspondant à  $A=1\ 000\ 000$ .

#### <u>Corrigé</u>

$$u_0=v_0=1, \forall n\in\mathbb{N}, u_{n+1}=u_n+v_n\ et\ v_{n+1}=2u_n+v_n$$
 pour tout  $n\in\mathbb{N}, u_n\geqslant 1$  et  $v_n\geqslant 1$ 



1. Calculer  $u_1$  et  $v_1$ .

$$u_1 = u_0 + v_0 = 1 + 1 = 2$$
  $v_1 = 2u_0 + v_0 = 2(1) + 1 = 3$ 

2. Déterminer le sens de variation de la suite  $(u_n)$ .

Soit  $n \in \mathbb{N}$ , on a :  $u_{n+1} - u_n = u_n + v_n - u_n = v_n \geqslant 1$ . Pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} - u_n > 0$  donc  $(u_n)$  est strictement croissante.

3. Démontrer par récurrence que : pour tout  $n \in \mathbb{N}$ ,  $u_n \geqslant n+1$ . En déduire la limite de  $(u_n)$ .

Pour tout  $n \in \mathbb{N}$  on considère la proposition  $P_n : \alpha u_n \geqslant n+1$  ».

initialisation

$$u_0 = 1$$
 et  $0 + 1 = 1$  donc  $u_0 \ge 0 + 1$ ,  $P_0$  est vraie

hérédité

Soit  $k \in \mathbb{N}$  tel que  $P_k$ : «  $u_k \geqslant k+1$  » est vraie (hypothèse de récurrence), montrons que  $P_{k+1}$ : «  $u_{k+1} \geqslant k+2$  » est vraie. On a :  $u_k \geqslant k+1$  (hypothèse de récurrence) et  $v_k \geqslant 1$ . En ajoutant membre à membre, on obtient :  $u_k + v_k \geqslant (k+1) + 1$ , c'est-à-dire :  $u_{k+1} \geqslant k+2$ , donc  $P_{k+1}$  est vraie.

#### conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N}$ ,  $P_n$  est vraie, autrement dit :  $\forall n \in \mathbb{N}$ ,  $u_n \geqslant n+1$ .

Par limite d'une somme on a immédiatement :  $\lim_{n \to +\infty} (n+1) = +\infty$ .

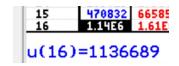
On a 
$$: \begin{cases} \forall n \in \mathbb{N}, u_n \geqslant n+1 \\ \lim\limits_{n \to +\infty} (n+1) = +\infty \end{cases}$$
 donc d'après le théorème de comparaison on en déduit  $: \lim\limits_{n \to +\infty} u_n = +\infty.$ 

**4.** La suite  $(u_n)$  diverge vers  $+\infty$ , en revenant à la définition d'une limite on obtient

« pour tout réel A, il existe  $n_0 \in \mathbb{N}$  tel que : pour tout  $n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $u_n \geqslant A$  ».

<u>Ligne 4</u> while U<=A: <u>Ligne 5</u> U, V=U+V, 2\*U+V

Pour  $A = 1\,000\,000$  on obtient  $n_0 = 16$ . vérification avec la calculatrice :



D17 [d'après bac]

On pose  $v_0=0$  et pour tout  $n\in\mathbb{N}$  :

$$v_{n+1} = \frac{1}{2 - v_n}$$

- 1. a. Démontrer par récurrence que, pour tout entier naturel n non nul, on a :  $0 < v_n < 1$ .
  - b. Démontrer que, pour tout entier naturel n:

$$v_{n+1} - v_n = \frac{(v_n - 1)^2}{2 - v_n}$$

- c. Démontrer que  $(v_n)$  est convergente.
- 2. Pour tout  $n \in \mathbb{N}$ , on pose :

$$w_n = \frac{1}{v_n - 1}$$

Démontrer que  $(w_n)$  est arithmétique, en préciser la raison et le premier terme, exprimer  $w_n$  puis  $v_n$  en fonction de n.

- 3. Déterminer  $\lim_{n\to+\infty}v_n$ .
- 4. Justifier que : « pour tout réel  $\varepsilon > 0$ , il existe  $n_0 \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $|v_n - 1| < \varepsilon$  ». Déterminer le plus petit de ces entiers  $n_0$  en fonction de  $\varepsilon$ .

#### Corrigé

On pose  $v_0=0$  et pour tout  $n\in\mathbb{N}$  :

$$v_{n+1} = \frac{1}{2 - v_n}$$

| NORMAL FLOTT AUTO RÉEL RAD MP<br>Deuxième condition si nécessaire |          | FLOTT AL<br>+ POUR △ |         | RAD MP | <br>Ō |
|-------------------------------------------------------------------|----------|----------------------|---------|--------|-------|
| Graph1 Graph2 Graph3 TYPE: SUITE(n) SUITE(n+1) SUITE(n+2)         | <i>n</i> | 0                    | ω<br>-1 |        |       |
| u(1)=                                                             | 1        | 1/2                  | -2      |        |       |
| $\blacksquare : \lor (n+1) \blacksquare \frac{1}{2-\upsilon(n)}$  | 2        | 2 3                  | -3      |        |       |
| ∨(0)≣0<br>∨(1)=                                                   | 3        | 3<br>4               | -4      |        |       |
| $\blacksquare : w(\eta+1) \boxminus \frac{1}{v(\eta+1)-1}$        | 4        | 5                    | -5      |        |       |
| w(0)目<br>w(1)=                                                    | n=0      |                      |         |        |       |

## 1. a. Démontrer par récurrence que, pour tout entier naturel n non nul, on a : $0 < v_n < 1$ .

Pour tout  $n \in \mathbb{N} \setminus \{0\}$  on considère la proposition

$$P_n : \ll 0 < v_n < 1$$
».

• initialisation (pour 
$$n = 1$$
 et non  $n = 0$ )
$$v_1 = \frac{1}{2 - v_0} = \frac{1}{2 - 0} = \frac{1}{2}$$

On a :  $0 < \frac{1}{2} < 1$  donc  $0 < v_1 < 1 : P_1$  est vraie.

#### hérédité

Soit  $k \in \mathbb{N} \setminus \{0\}$  tel que  $P_k$ : «  $0 < v_k < 1$  » est vraie (hypothèse de récurrence) et montrons que  $P_{k+1}$  : «  $0 < v_{k+1} < 1$  » est vraie.

On a :  $0 < v_k < 1$  (H.R.) donc en multipliant pat -1 < 0 :

$$0 > -v_k > -1$$
, puis en ajoutant  $1: 2 > 2 - v_n > 1$ 

Les nombre  $\frac{1}{2}$ ,  $2 - v_n$  et 1 sont non nuls et de même signe donc en prenant peurs inverses on inverse le sens de la relation d'ordre :

$$\frac{1}{2} < \frac{1}{2 - v_n} < \frac{1}{1}$$

$$\Leftrightarrow \frac{1}{2} < \frac{1}{2 - v_n} < 1$$

$$0 < \frac{1}{2} < v_{k+1} < 1$$

$$0 < v_{k+1} < 1$$

 $P_{k+1}$  est vraie.

#### Conclusion

Il résulte des deux points précédents et du principe de récurrence que, pour tout  $n \in \mathbb{N} \setminus \{0\}$ ,  $P_n$  est vraie, autrement dit :  $\forall n \in \mathbb{N}^*, 0 < v_n < 1.$ 

#### b. Démontrer que, pour tout entier naturel n:

$$v_{n+1} - v_n = \frac{(v_n - 1)^2}{2 - v_n}$$

Soit  $n \in \mathbb{N}$ , on a :

$$v_{n+1} - v_n = \frac{1}{2 - v_n} - v_n = \frac{1}{2 - v_n} - \frac{v_n(2 - v_n)}{2 - v_n}$$

$$= \frac{1 - v_n(2 - v_n)}{2 - v_n} = \frac{1 - 2v_n + v_n^2}{2 - v_n} = \frac{(v_n)^2 - 2(v_n)(1) + (1)^2}{2 - v_n}$$
$$= \frac{(v_n - 1)^2}{2 - v_n}$$

On a donc bien:

$$\forall n \in \mathbb{N}, v_{n+1} - v_n = \frac{(v_n - 1)^2}{2 - v_n}$$

- c. Démontrer que la suite  $(v_n)$  est convergente.
  - on a montré en a. que :  $\forall n \in \mathbb{N}^*$ ,  $0 < v_n < 1$ , et comme  $v_0 = 0$  on a :  $\forall n \in \mathbb{N}$ ,  $0 \leqslant v_n < 1$  donc la suite  $(v_n)$  est majorée par la constante 1
  - On a montré en b. que :

$$\forall n \in \mathbb{N}, v_{n+1} - v_n = \frac{(v_n - 1)^2}{2 - v_n}$$

Or,  $(v_n - 1)^2 \ge 0$  et  $2 - v_n > 0$  donc  $v_{n+1} - v_n \ge 0$ .  $\forall n \in \mathbb{N}, v_{n+1} - v_n \ge 0$  donc la suite  $(v_n)$  est croissante

La suite  $(v_n)$  est croissante et majorée donc d'après le théorème de convergence monotone **elle est convergente**.

#### 2. Pour tout $n \in \mathbb{N}$ , on pose :

$$w_n = \frac{1}{v_n - 1}$$

Démontrer que  $(w_n)$  est arithmétique, en préciser la raison et le premier terme, exprimer  $w_n$  puis  $v_n$  en fonction de n.

Soit  $n \in \mathbb{N}$ , on a :

$$w_{n+1} - w_n = \frac{1}{v_{n+1} - 1} - \frac{1}{v_n - 1} = \frac{1}{\frac{1}{2 - v_n} - 1} - \frac{1}{v_n - 1}$$

$$= \frac{1}{\frac{1}{2 - v_n}} - \frac{2 - v_n}{2 - v_n} - \frac{1}{v_n - 1} = \frac{1}{\frac{1 - (2 - v_n)}{2 - v_n}} - \frac{1}{v_n - 1}$$

$$= \frac{2 - v_n}{-1 + v_n} - \frac{1}{v_n - 1} = \frac{2 - v_n}{v_n - 1} - \frac{1}{v_n - 1} = \frac{1 - v_n}{v_n - 1} = -1$$

 $\forall n \in \mathbb{N}$ ,  $w_{n+1} - w_n = -1$  et -1 est une constante donc la suite  $(w_n)$  est arithmétique de raison (-1).

On a:

$$w_0 = \frac{1}{v_0 - 1} = \frac{1}{0 - 1} = -1$$

et pour tout  $n \in \mathbb{N}$ :

$$w_n = w_0 + nr = -1 + n \times (-1) = -n - 1$$

Résumons :  $\forall n \in \mathbb{N}$ ,  $w_n = -n - 1$ .

Or

$$w_n = \frac{1}{v_n - 1}$$

$$v_n - 1 = \frac{1}{w_n}$$

$$v_n = \frac{1}{w_n} + 1 = 1 - \frac{1}{n+1}$$

Résumons:

$$orall n \in \mathbb{N}$$
 ,  ${oldsymbol{v}}_n = \mathbf{1} - rac{1}{n+1}$ 

## 3. Déterminer $\lim_{n\to+\infty}v_n$ .

Justifier que : « pour tout réel  $\varepsilon > 0$ , il existe  $n_0 \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}$ , si  $n \geqslant n_0$  alors  $|v_n - 1| < \varepsilon$  ».

Déterminer le plus petit de ces entiers  $n_0$  en fonction de  $\varepsilon$ .

On a:  $\lim_{n\to+\infty} (n+1) = +\infty$  donc par limite d'un quotient

$$\lim_{n \to +\infty} \frac{1}{n+1} = 0$$

puis par limite d'une différence :

$$\lim_{n \to +\infty} \left( 1 - \frac{1}{n+1} \right) = 1$$

Conclusion :  $\lim_{n\to+\infty} v_n = 1$ .

En revenant à la définition d'une limite, et du fait que  $(u_n)$  converge vers 1, on peut affirmer que : « pour tout réel  $\varepsilon>0$ , il existe  $n_0\in\mathbb{N}$  tel que :  $\forall n\in\mathbb{N}$ , si  $n\geqslant n_0$  alors  $|v_n-1|<\varepsilon$  ».

#### Recherche

$$|v_n-1|=\left|1-\frac{1}{n+1}-1\right|=\left|-\frac{1}{n+1}\right|=\frac{1}{n+1}$$
 dire que  $|v_n-1|<\varepsilon$  revient à dire  $\frac{1}{n+1}<\varepsilon$  
$$n+1>\frac{1}{\varepsilon}$$
 
$$n>\frac{1}{\varepsilon}-1$$

Notons  $n_0$  le plus petit entier naturel strictement plus grand que  $\frac{1}{\varepsilon}-1$ . Soit  $n \in \mathbb{N}$  tel que  $n \geqslant n_0$ .

On a :  $n \ge n_0$  et  $n_0 > \frac{1}{\varepsilon} - 1$  donc  $n > \frac{1}{\varepsilon} - 1$ , donc  $n + 1 > \frac{1}{\varepsilon}$ 

On obtient alors:

$$\frac{1}{n+1} < \varepsilon$$

$$\left| -\frac{1}{n+1} \right| < \varepsilon$$

$$\left[ 1 - \frac{1}{n+1} - 1 \right] < \varepsilon$$

$$\left| v_n - 1 \right| < \varepsilon$$

On a donc :  $\forall \varepsilon > 0$ ,  $\exists n_0 \in \mathbb{N}$  ( $n_0$  plus petit entier naturel strictement supérieur à  $\frac{1}{\varepsilon} - 1$  convient) tel que :  $\forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow |v_n - 1| < \varepsilon$ .