Exercice 1 [5 pts]

Pour tout $n \in \mathbb{N}$, $u_n = n^2 - 4n + (-1)^n$: déterminer $\lim_{n \to +\infty} u_n$.

Exercice 2 [5 pts]

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $17^n - 1$ est un multiple de 8.

Exercice 3 [10 pts]

Soit (u_n) la suite définie par $u_0=120$ et $\forall n\in\mathbb{N}, u_{n+1}=0.8$ u_n+4 .

- **1.** Démontrer que la suite (u_n) est minorée par 20.
- **2.** Démontrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = -0.2$ $u_n + 4$. En déduire le sens de variation de la suite (u_n) .
- **3.** Justifier que la suite (u_n) converge.
- **4.** Pour tout $n \in \mathbb{N}$, on pose : $v_n = u_n 20$.
 - **a.** Déterminer v_0 .
 - **b.** Démontrer que la suite (v_n) est géométrique et préciser sa raison.
 - **c.** Exprimer v_n puis u_n en fonction de n.
- **5.** Déterminer la limite de la suite (u_n) .
- **6.** BONUS [0,5 pt]

On note ℓ la limite de la suite (u_n) précédemment déterminée.

À l'aide de la calculatrice donner sans justification le plus petit entier naturel n_0 tel que $\left|u_{n_0}-\ell\right|<0.01$ puis justifier que :

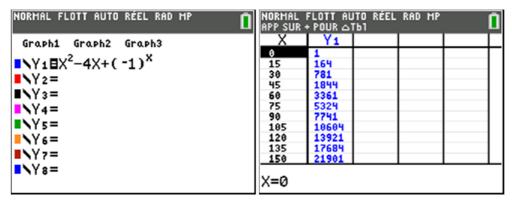
« pour tout $n \in \mathbb{N}$, si $n \geqslant n_0$ alors $|u_n - \ell| < 0.01$ ».

Corrigé

Exercice 1 [5 points]

Pour tout $n \in \mathbb{N}$, $u_n = n^2 - 4n + (-1)^n$: déterminer $\lim_{n \to \infty} u_n$.

Utilisation de la calculatrice



On peut raisonnablement penser que $u_n \to +\infty$

Soit $n \in \mathbb{N}$, on a : $-1 \le (-1)^n \le 1$ donc, en ajoutant $n^2 - 4n$ à chaque membre :

$$-1 + n^2 - 4n \le (-1)^n + n^2 - 4n \le 1 + n^2 - 4n$$

Autrement dit : $n^2 - 4n - 1 \le u_n \le n^2 - 4n + 1$, en particulier que : $n^2 - 4n - 1 \le u_n$.

Pour $n \neq 0$, on a :

$$n^2 - 4n - 1 = n^2 \left(1 - \frac{4}{n} - \frac{1}{n^2} \right)$$

donc on obtient:

$$n^2 \left(1 - \frac{4}{n} - \frac{1}{n^2} \right) \leqslant u_n$$

On a d'une part : $\lim_{n\to +\infty}\frac{4}{n}=0$ et $\lim_{n\to +\infty}\frac{1}{n^2}=0$ donc $\lim_{n\to +\infty}\left(1-\frac{4}{n}-\frac{1}{n^2}\right)=1$ et d'autre part on a : $\lim_{n\to +\infty}n^2=+\infty$.

Par limite d'un produit on en déduit que : $\lim_{n \to +\infty} \left[n^2 \left(1 - \frac{4}{n} - \frac{1}{n^2} \right) \right] = +\infty$.

Finalement : $\lim_{n \to +\infty} (n^2 - 4n - 1) = +\infty$.

Résumons : pour tout $n \in \mathbb{N}$, $n^2 - 4n - 1 \leqslant u_n$ et $\lim_{n \to +\infty} (n^2 - 4n - 1) = +\infty$ donc par application du théorème de comparaison on en déduit que : $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 2 [5 points]

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $17^n - 1$ est un multiple de 8.

Pour tout $n \in \mathbb{N}$ on considère la proposition $P_n : \ll 17^n - 1$ est un multiple de 8 ».

• initialisation

Vérifions que P_0 : « $17^0 - 1$ est un multiple de 8 » est vraie.

On a : $17^0 - 1 = 1 - 1 = 0 = 0 \times 8$ donc $17^0 - 1$ est un multiple de 8 par conséquent P_0 est vraie.

• hérédité

Soit $k \in \mathbb{N}$ tel que P_k : « $17^k - 1$ est un multiple de 8 » est vraie (hypothèse de récurrence).

Démontrons que P_{k+1} : « $17^{k+1} - 1$ est un multiple de 8 » est vraie.

Par hypothèse de récurrence, 17^k-1 est un multiple de 8 donc il existe $q\in\mathbb{Z}$ tel que : $17^k-1=8q$ autrement dit tel que : $17^k = 8q + 1$. On a :

$$17^{k+1} - 1 = 17 \times 17^k - 1 = 17 \times (8q + 1) - 1 = 17 \times 8q + 17 - 1 = 17 \times 8q + 16 = 8(17q + 2)$$

En posant q'=17q+2, on a : $q'\in\mathbb{Z}$ et $17^{k+1}-1=8q'$ donc : $17^{k+1}-1$ est un multiple de 8, donc P_{k+1} est vraie. On pourrait montrer en fait que $q \in \mathbb{N}$ et $q' \in \mathbb{N}$ mais cela ne présente ici aucun intérêt.

Résumons : $\forall k \in \mathbb{N}$, si P_k est vraie alors P_{k+1} est vraie.

Conclusion

On déduit des deux points précédents et du principe de récurrence que pour tout $n \in \mathbb{N}$, P_n est vraie autrement dit que : $\forall n \in \mathbb{N}$, $\mathbf{17}^n - \mathbf{1}$ est divisible par $\mathbf{8}$.

Exercice 3

$$u_0 = 120 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = 0, 8 u_n + 4.$$

1. Démontrer que la suite (u_n) est minorée par 20.

Rappel : la suite (u_n) est minorée par la constante m, on dit aussi que la constante m est un minorant de la suite (u_n) lorsque tous les termes de la suite sont supérieur ou égaux à m : pour tout n entier naturel, $u_n \geqslant m$.

Pour tout $n \in \mathbb{N}$, on considère la proposition $P_n : \ll u_n \geqslant 20$ » .

• initialisation

Montrons que P_0 : « $u_0 \ge 20$ » est vraie.

On a : $u_0 = 120$ et $120 \ge 20$ donc $u_0 \ge 20$ autrement dit P_0 est vraie.

• hérédité

Soit $k \in \mathbb{N}$ tel que P_k : « $u_k \ge 20$ » est vraie (hypothèse de récurrence).

Démontrons que P_{k+1} : « $u_{k+1} \ge 20$ » est vraie.

On a : $u_k \geqslant 20$ (hypothèse de récurrence) et 0.8 > 0 donc $0.8 \times u_k \geqslant 0.8 \times 20$ autrement dit : $0.8u_k \geqslant 16$ puis en ajoutant 4 à chaque membre : $0.8u_k + 4 \geqslant 16 + 4$, c'est-à-dire : $u_{k+1} \geqslant 20$ donc P_{k+1} est vraie.

Résumons : $\forall k \in \mathbb{N}$, si P_k est vraie, alors P_{k+1} est vraie.

• conclusion

Il résulte des deux points précédents et du principe de récurrence que pour tout $n \in \mathbb{N}$ la proposition P_n est vraie autrement dit : $\forall n \in \mathbb{N}$, $u_n \geqslant 20$, autrement dit la **suite** (\boldsymbol{u}_n) **est minorée par 20**.

2. Démontrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = -0$, $2u_n + 4$.

Pour tout $n \in \mathbb{N}$, on a :

$$u_{n+1}-u_n=0.8u_n+4-u_n = 0.8u_n-1u_n+4=-0.2u_n+4$$
 On a donc bien : $\forall n\in\mathbb{N}, u_{n=1}-u_n=-0.2u_n+4.$

En déduire le sens de variation de la suite (u_n) .

Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = -0.2u_n + 4$, or la suite (u_n) est minorée par 20 donc $u_n \geqslant 20$, en multipliant par (-0.2) < 0 on obtient : $(-0.2) \times u_n \leqslant (-0.2) \times 20$ c'est-à-dire : $-0.2u_n \leqslant -4$, puis en ajoutant 4 à chaque membre : $-0.2u_n + 4 \leqslant -4 + 4$ autrement dit : $u_{n+1} - u_n \leqslant 0$. Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n \leqslant 0$ donc **la suite** (u_n) **est décroissante**.

3. La suite (u_n) est décroissante et minorée donc d'après le théorème de convergence monotone elle est convergente.

 (u_n) est minorée par 20 et est convergente donc sa limite est supérieure ou égale à 20 : rien ne permet, pour l'instant, d'affirmer que cette dernière est « égale à 20 ».

- 4. Pour tout $n \in \mathbb{N}$, on pose : $v_n = u_n 20$.
 - a. Déterminer v_0 .

$$v_0 = u_0 - 20 = 120 - 20 = 100$$

b. Démontrer que la suite (v_n) est géométrique de raison 0,8.

Soit $n \in \mathbb{N}$, on a :

$$v_{n+1} = u_{n+1} - 20 = 0.8u_n + 4 - 20 = 0.8u_n - 16 = 0.8\left(u_n - \frac{16}{0.8}\right) = 0.8(u_n - 20) = 0.8v_n$$

Pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.8 \times v_n$ donc (v_n) est géométrique de raison 0.8.

c. Exprimer v_n puis u_n en fonction de n.

Pour tout $n \in \mathbb{N}$, $v_n = v_0 \times q^n = 100 \times 0.8^n$. Or, $\forall n \in \mathbb{N}$, $v_n = u_n - 20$, autrement dit : $u_n = v_n + 20$, donc $u_n = 100 \times 0.8^n + 20$. Résumons : $\forall n \in \mathbb{N}$, $v_n = 100 \times 0.8^n$ et $u_n = 100 \times 0.8^n + 20$.

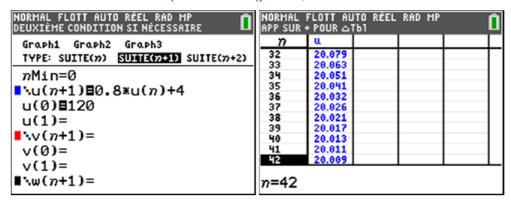
5. Déterminer la limite de la suite (u_n) .

On a : -1 < 0.8 < 1, or si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$, donc : $\lim_{n \to +\infty} 0.8^n = 0$, puis $\lim_{n \to +\infty} (100 \times 0.8^n) = 0$ par limite d'une somme : $\lim_{n \to +\infty} (100 \times 0.8^n + 20) = 20$. Conclusion : $\lim_{n \to +\infty} u_n = 20$.

6. [BONUS]

À l'aide de la calculatrice donner sans justification le premier entier naturel n_0 tel que : pour tout $n \in \mathbb{N}$, si $n \geqslant n_0$ alors $|u_n - \ell| < 0$, 01 où ℓ est la limite de la suite (u_n) précédement déterminée.

La contrainte s'écrit $|u_n-20|<0.01$ or $u_n-20\geqslant 0$ donc cette contrainte s'écrit $u_n-20<0.01$ ou encore de manière équivalente : $u_n<20.01$.



À l'aide de la calculatrice : $n_0 = 42$.

Si $n \ge n_0$, comme la suite (u_n) est décroissante on en déduit $u_n \le u_{n_0}$.

On a : $u_n\leqslant u_{n_0}$ et $u_{n_0}<20,\!01$ donc $u_n<20,\!01$ autrement dit : $u_n-20<0,\!01$ et comme $u_n-20\geqslant 0$ l'inégalité : $u_n-20<0,\!01$ s'écrit aussi : $|u_n-20|<0,\!01$.

Résumons : $\forall n \in \mathbb{N}$, si $n \ge n_0$ alors $|u_n - 20| < 0.01$.