Calculatrice autorisée en mode EXAMEN

Exercice.1 [5 points : 2 pt+3 pts]

Déterminer les limites suivantes :

1.
$$\lim_{n \to +\infty} (7^n + (-1)^n)$$

2.
$$\lim_{n \to +\infty} (\sqrt{n^2 + 4n + 2} - \sqrt{n^2 + 1})$$

Exercice.2 [15 points] d'après Bac S Métropole juin 2013

Soit la suite numérique (u_n) définie sur \mathbb{N} par $u_0=2$ et pour tout entier naturel n:

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$$

1. a. Démontrer par récurrence que, pour tout entier naturel n, on a :

$$u_n \leq n+3$$

b. Démontrer que, pour tout entier naturel n, on a :

$$u_{n+1} - u_n = \frac{1}{3}(n+3-u_n)$$

c. Déterminer le sens de variation de (u_n) .

2. Pour tout entier naturel, on pose : $v_n = u_n - n$.

- **a.** Déterminer v_0 .
- **b.** Montrer que la suite (v_n) est géométrique et préciser sa raison.

c. Exprimer v_n en fonction de $n, n \in \mathbb{N}$.

3. Pour tout entier naturel n, on pose :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$

et pour tout entier naturel non nul n, on pose :

$$T_n = \frac{S_n}{n^2}$$

a. Déterminer des constantes a, b, c et d telles que, pour tout entier naturel n:

$$S_n = a + b\left(\frac{2}{3}\right)^n + cn^2 + dn$$

b. Déterminer la limite de la suite (T_n) .

Corrigé

Exercice.1

1.
$$\lim_{n\to +\infty} (7^n + (-1)^n)$$

Soit $n \in \mathbb{N}$.

On a :
$$-1 \le (-1)^n \le 1$$
,

puis en ajoutant 7^n à chaque membre : $-1+7^n\leqslant 7^n+(-1)^n\leqslant 1+7^n$

Ona: 7 > 1, or si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$, donc: $\lim_{n \to +\infty} 7^n = +\infty$,

puis par limite d'une somme : $\lim_{n \to +\infty} [-1 + 7^n] = +\infty$.

On a : $\begin{cases} \forall n \in \mathbb{N}, -1 + 7^n \leqslant 7^n + (-1)^n \\ \lim_{n \to +\infty} [-1 + 7^n] = +\infty \end{cases}$ donc d'après le théorème de comparaison on en

Autre méthode

Soit $n \in \mathbb{N}$, on a :

$$7^{n} + (-1)^{n} = 7^{n} \left[1 + \frac{(-1)^{n}}{7^{n}} \right] = 7^{n} \left[1 + \left(\frac{-1}{7} \right)^{n} \right] = 7^{n} \left[1 + \left(-\frac{1}{7} \right)^{n} \right]$$

7 > 1, or si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$, donc : $\lim_{n \to +\infty} 7^n = +\infty$ (*)

$$-1<-rac{1}{7}<1$$
, or si $-1< q<1$ alors $\lim_{n
ightarrow+\infty}q^n=0$, donc : $\lim_{n
ightarrow+\infty}\left(-rac{1}{7}
ight)^n=0$

puis :
$$\lim_{n \to +\infty} \left[1 + \left(-\frac{1}{7} \right)^n \right] = 1 \ (**)$$

Par limite d'un produit on déduit de (*) et (**) que : $\lim_{n\to+\infty} \left(7^n \left[1+\left(-\frac{1}{7}\right)^n\right]\right) = +\infty$,

 $\operatorname{donc}: \lim_{n \to +\infty} [7^n + (-1)^n] = +\infty.$

$$2.\lim_{n\to+\infty}\left(\sqrt{n^2+4n+2}-\sqrt{n^2+1}\right)$$

Pour tout $n \in \mathbb{N}^*$, on a :

$$\sqrt{n^2 + 4n + 2} - \sqrt{n^2 + 1} = \frac{(\sqrt{n^2 + 4n + 2} - \sqrt{n^2 + 1})(\sqrt{n^2 + 4n + 2} + \sqrt{n^2 + 1})}{\sqrt{n^2 + 4n + 2} + \sqrt{n^2 + 1}}$$

$$= \frac{(\sqrt{n^2 + 4n + 2})^2 - (\sqrt{n^2 + 1})^2}{\sqrt{n^2} \left(1 + \frac{4}{n} + \frac{2}{n^2}\right) + \sqrt{n^2} \left(1 + \frac{1}{n^2}\right)} = \frac{n^2 + 4n + 2 - (n^2 + 1)}{\sqrt{n^2} \times \sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + \sqrt{n^2} \times \sqrt{1 + \frac{1}{n^2}}}$$

$$= \frac{4n + 1}{n\sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + n\sqrt{1 + \frac{1}{n^2}}} = \frac{n\left(4 + \frac{1}{n}\right)}{n\left(\sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + \sqrt{1 + \frac{1}{n^2}}\right)} = \frac{4 + \frac{1}{n}}{\sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + \sqrt{1 + \frac{1}{n^2}}}$$

Or, $\lim_{n\to+\infty}\frac{4}{n}=\lim_{n\to+\infty}\frac{2}{n}=0$ (cours) puis par limite d'une somme et en prenant la racine carrée:

$$\lim_{n \to +\infty} \sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} = 1 \text{ et } \lim_{n \to +\infty} \sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} = 1$$

d'où:

$$\lim_{n \to +\infty} \left(\sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + \sqrt{1 + \frac{1}{n^2}} \right) = 2$$

puis par limite d'un quotient :

$$\lim_{n \to +\infty} \frac{4 + \frac{1}{n}}{\sqrt{1 + \frac{4}{n} + \frac{2}{n^2}} + \sqrt{1 + \frac{1}{n^2}}} = 2$$

Conclusion:

$$\lim_{n\to+\infty}\left(\sqrt{n^2+4n+2}-\sqrt{n^2+1}\right)=2$$

Exercice 2

Soit la suite numérique (u_n) définie sur $\mathbb N$ par $u_0=2$ et pour tout entier naturel n :

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$$

- 1. a. Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n \leqslant n+3$. Pour tout $n \in \mathbb{N}$ on considère la proposition P_n : « $u_n \leqslant n+3$ ».
 - initialisation

On a : $2 \le 0 + 3$, or $u_0 = 2$ donc $u_0 \le 0 + 3$: P_0 est vraie.

• hérédité

Soit $k \in \mathbb{N}$ tel que P_k : « $u_k \le k + 3$ » est vraie.

Montrons que P_{k+1} : « $u_{k+1} \le (k+1) + 3$ » est vraie.

On a : $u_k \le k + 3$, puis en multipliant chaque membre par $\frac{2}{3} > 0$:

$$\frac{2}{3}u_k \leqslant \frac{2}{3}(k+3)$$

$$\frac{2}{3}u_k \leqslant \frac{2}{3}k+2$$

puis en ajoutant $\frac{1}{3}k + 1$ à chaque membre :

$$\frac{2}{3}u_k + \frac{1}{3}k + 1 \le \frac{2}{3}k + 2 + \frac{1}{3}k + 1$$

$$u_{k+1} \le k + 3$$

Or, $k + 3 \le k + 4$, donc:

$$u_{k+1} \leqslant k+4$$

ce qui s'écrit aussi :

$$u_{k+1} \leqslant (k+1) + 3$$

autrement dit P_{k+1} est vraie.

Conclusion:

Il résulte des deux points précédents et du principe de récurrence que, pour tout $n \in \mathbb{N}$, P_n est vraie, autrement dit : $\forall n \in \mathbb{N}$, $u_n \leqslant n+3$.

b. Démontrer que, pour tout entier naturel n, on a :

$$u_{n+1} - u_n = \frac{1}{3}(n+3-u_n)$$

Soit $n \in \mathbb{N}$, on a :

$$u_{n+1} - u_n = \frac{2}{3}u_n + \frac{1}{3}n + 1 - u_n = -\frac{1}{3}u_n + \frac{1}{3}n + 1 = \frac{1}{3}n + 1 - \frac{1}{3}u_n$$
$$= \frac{1}{3}\left(n + \frac{1}{\frac{1}{3}} - u_n\right) = \frac{1}{3}\left(n + 1 \times \frac{3}{1} - u_n\right) = \frac{1}{3}(n + 3 - u_n)$$

Conclusion:

$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{3}(n+3-u_n)$$

c. Déterminer le sens de variation de la suite (u_n) .

Soit $n \in \mathbb{N}$, on a montré en **a.** que : $u_n \leqslant n+3$, donc : $n+3-u_n \geqslant 0$, puis en multipliant par $\frac{1}{3} > 0$: $\frac{1}{3} (n+3-u_n) \geqslant \frac{1}{3} (0)$, autrement dit : $\frac{1}{3} (n+3-u_n) \geqslant 0$.

Or,
$$\frac{1}{3}(n+3-u_n) = u_{n+1} - u_n$$
, donc : $u_{n+1} - u_n \ge 0$.

Conclusion: $\forall n \in \mathbb{N}, u_{n+1} - u_n \ge 0$, donc la suite (u_n) est croissante.

2. Pour tout entier naturel, on pose : $v_n = u_n - n$.

a. Déterminer v_0 .

$$v_0 = u_0 - 0 = 2 - 0 = 2$$

Conclusion : $v_0 = 2$.

b. Montrer que (v_n) est géométrique et préciser sa raison.

Soit $n \in \mathbb{N}$, on a :

$$\begin{aligned} v_{n+1} &= u_{n+1} - (n+1) = \frac{2}{3}u_n + \frac{1}{3}n + 1 - n - 1 = \frac{2}{3}u_n + \frac{1}{3}n - \frac{3}{3}n = \frac{2}{3}u_n - \frac{2}{3}n \\ &= \frac{2}{3}(u_n - n) = \frac{2}{3}v_n \end{aligned}$$

<u>Conclusion</u>: pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{2}{3}v_n$ et $\frac{2}{3}$ est une constante, donc (v_n) est géométrique de raison $\frac{2}{3}$.

c. Exprimer v_n en fonction de n, $n \in \mathbb{N}$.

Soit $n \in \mathbb{N}$.

 (v_n) est géométrique donc en notant q sa raison on a : $v_n=v_0\times q^n$. or, $v_0=2$ et $q=\frac{2}{3}$, donc : $v_n=2\left(\frac{2}{3}\right)^n$.

Conclusion:

$$orall n \in \mathbb{N}$$
 , ${oldsymbol{v}}_n = 2 \left(rac{2}{3}
ight)^n$

3. Pour tout entier naturel n, on pose :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n \text{ et } T_n = \frac{S_n}{n^2}$$

a. Déterminer des constantes a, b, c et d telles que, pour tout entier naturel n:

$$S_n = a + b\left(\frac{2}{3}\right)^n + cn^2 + dn$$

Soit $n \in \mathbb{N}$, on a :

$$S_{n}$$

$$= u_{0} + u_{1} + \dots + u_{n}$$

$$= v_{0} + 0 + v_{1} + 1 + \dots + v_{n} + n$$

$$= v_{0} + v_{1} + \dots + v_{n} + 0 + 1 + \dots + n$$

$$= v_{0} \times \frac{1 - q^{n+1}}{1 - q} + \frac{n(n+1)}{2}$$

$$= 2 \times \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} + \frac{n(n+1)}{2}$$

$$= 2 \times \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{\frac{1}{3}} + \frac{n^{2} + n}{2}$$

$$= 2 \times \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{\frac{1}{3}} + \frac{n^{2} + n}{2}$$

$$= 2 \times \frac{3}{1} \times \left[1 - \left(\frac{2}{3}\right)^{n+1}\right] + \frac{n^{2}}{2} + \frac{n}{2}$$

$$= 6 \left[1 - \frac{2}{3}\left(\frac{2}{3}\right)^{n}\right] + \frac{1}{2}n^{2} + \frac{1}{2}n$$

$$= 6 - 6 \times \frac{2}{3} \times \left(\frac{2}{3}\right)^{n} + \frac{1}{2}n^{2} + \frac{1}{2}n$$

$$= 6 - 4\left(\frac{2}{3}\right)^{n} + \frac{1}{2}n^{2} + \frac{1}{2}n$$

<u>Résumons</u>:

$$\forall n \in \mathbb{N}, S_n = 6 - 4\left(\frac{2}{3}\right)^n + \frac{1}{2}n^2 + \frac{1}{2}n$$

En comparant avec l'expression proposée : a=6, b=-4, $c=d=\frac{1}{2}$ conviennent.

b. Déterminer la limite de la suite (T_n) .

Pour tout $n \in \mathbb{N}$, on a :

$$T_n = \frac{S_n}{n^2} = \frac{6 - 4\left(\frac{2}{3}\right)^n + \frac{1}{2}n^2 + \frac{1}{2}n}{n^2} = \frac{6}{n^2} - \frac{4\left(\frac{2}{3}\right)^n}{n^2} + \frac{\frac{1}{2}n^2}{n^2} + \frac{\frac{1}{2}n}{n^2}$$
$$T_n = \frac{6}{n^2} - \frac{4\left(\frac{2}{3}\right)^n}{n^2} + \frac{1}{2} + \frac{1}{2} \times \frac{1}{n}$$

On a : $-1 < \frac{2}{3} < 1$, or si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$ donc $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$ d'où $\lim_{n\to+\infty}\left(4\left(\frac{2}{3}\right)^n\right)=0$ D'autre part, $\lim_{n\to+\infty}n^2=+\infty$ (cours) donc par limite d'un quotient :

$$\lim_{n \to +\infty} \frac{6}{n^2} = \lim_{n \to +\infty} \frac{4\left(\frac{2}{3}\right)^n}{n^2} = 0$$

D'autre part : $\lim_{n\to+\infty}\frac{1}{n}=0$ (cours) d'où $\lim_{n\to+\infty}\left(\frac{1}{2}\times\frac{1}{n}\right)=0$ puis par limite d'une somme:

$$\lim_{n \to +\infty} \left(\frac{6}{n^2} - \frac{4\left(\frac{2}{3}\right)^n}{n^2} + \frac{1}{2} + \frac{1}{2} \times \frac{1}{n} \right) = \frac{1}{2}$$

 $\underline{\text{Conclusion}}: \lim_{n \to +\infty} T_n = \frac{1}{2}$