Exercice 1 [5 pts]

Pour tout $n \in \mathbb{N}$, on pose :

$$u_n = \frac{\sin(n)}{n+5} + 2$$

Déterminer $\lim_{n\to+\infty}u_n$.

Exercice 2 [4 pts]

Pour tout $n \in \mathbb{N}$, on pose :

$$u_n = \frac{4n+11}{n+2}$$

On souhaite démontrer <u>en revenant à la définition</u> que la suite (u_n) converge vers 4 c'est-à-dire que : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que : $\forall n \in \mathbb{N}$, si $n \geqslant n_0$, alors $|u_n - 4| < \varepsilon$. Exprimer n_0 en fonction de ε , justifier.

Exercice 3 [11 pts]

On pose $u_0 = 40$ et, pour tout n entier naturel : $u_{n+1} = 0.6u_n + 4$.

- **1.** Calculer u_1 .
- **2.** Démontrer par récurrence que, pour tout n entier naturel on a : $10 \le u_{n+1} \le u_n \le 40$.
- **3.** En déduire que la suite (u_n) est convergente.
- **4.** Déterminer la limite ℓ de la suite (u_n) .
- **5.** Pour tout $n \in \mathbb{N}$, on pose : $v_n = u_n 10$.
 - **a.** Montrer que (v_n) est géométrique, préciser son premier terme et sa raison.
 - **b.** Exprimer v_n en fonction de $n, n \in \mathbb{N}$.
 - **c.** Pour tout $n \in \mathbb{N}$ on note S_n la somme des termes consécutifs de (v_n) de v_0 à v_n :

$$S_n = \sum_{k=0}^n v_k = v_0 + \dots + v_n$$

Exprimer S_n en fonction de n.

6. Pour tout $n \in \mathbb{N}$ on note T_n la somme des termes consécutifs de (u_n) de u_0 à u_n :

$$T_n = \sum_{k=0}^n u_k = u_0 + \dots + u_n$$

- **a.** Déduire de **5.c.** que : $\forall n \in \mathbb{N}$, $T_n = 10n + 85 45 \times 0.6^n$.
- **b.** On rappelle que : « si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$ », déterminer : $\lim_{n \to +\infty} T_n$.

Corrigé

Exercice 1

$$orall n \in \mathbb{N}$$
 , $u_n = rac{\sin(n)}{n+5} + 2$, déterminer $\lim_{n o +\infty} u_n$

Soit $n \in \mathbb{N}$.

On a : $-1 \le \sin(n) \le 1$ puis en divisant chaque membre par n + 5 > 0 :

$$\frac{-1}{n+5} \leqslant \frac{\sin(n)}{n+5} \leqslant \frac{1}{n+5}$$

puis en ajoutant 2 à chaque membre :

$$\frac{-1}{n+5} + 2 \leqslant \frac{\sin(n)}{n+5} + 2 \leqslant \frac{1}{n+5} + 2$$

autrement dit:

$$2 - \frac{1}{n+5} \le u_n \le 2 + \frac{1}{n+2}$$

On a : $\lim_{n\to+\infty}(n+5)=+\infty$ donc, par limite d'un quotient : $\lim_{n\to+\infty}\frac{1}{n+5}=0$, puis par limite

d'une différence : $\lim_{n \to +\infty} \left(2 - \frac{1}{n+5}\right) = 2$.

On montrerait de même que : $\lim_{n\to+\infty} \left(2 + \frac{1}{n+5}\right) = 2$

Résumons:

$$\overline{\left\{\begin{array}{l} \forall n \in \mathbb{N}, 2 - \frac{1}{n+5} \leqslant u_n \leqslant 2 + \frac{1}{n+2} \\ \lim_{n \to +\infty} \left(2 - \frac{1}{n+5}\right) = \lim_{n \to +\infty} \left(2 + \frac{1}{n+5}\right) = 2 \end{array}\right\}}$$

donc d'après le théorème des gendarmes on en déduit que : $\lim_{n o +\infty} u_n = 2$.

Exercice 2

$$\forall n \in \mathbb{N}, u_n = \frac{4n+11}{n+2}$$

On souhaite démontrer <u>en revenant à la définition</u> que la suite (u_n) converge vers 4 c'est-à-dire que : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que : $\forall n \in \mathbb{N}$, si $n \geqslant n_0$, alors $|u_n - 4| < \varepsilon$. Déterminer n_0 en fonction de ε , justifier.

<u>Recherche</u>

$$\begin{aligned} |u_n - 4| &= \left| \frac{4n + 11}{n + 2} - \frac{4(n + 2)}{n + 2} \right| = \left| \frac{4n + 11}{n + 2} - \frac{4n + 8}{n + 2} \right| = \left| \frac{4n + 11 - (4n + 8)}{n + 2} \right| \\ &= \left| \frac{4n + 11 - 4n - 8}{n + 2} \right| = \left| \frac{3}{n + 2} \right| = \frac{3}{n + 2} \\ &\frac{3}{n + 2} < \varepsilon \qquad 3 < \varepsilon(n + 2) \qquad \frac{3}{\varepsilon} < n + 2 \qquad \frac{3}{\varepsilon} - 2 < n \end{aligned}$$

 $n_0 = \text{plus premier entier naturel strictement plus grand que} : \frac{3}{\varepsilon} - 2.$

Soit ε un réel strictement positif, posons : $n_0=$ le premier entier naturel strictement plus grand que $\frac{3}{\varepsilon}-2$.

Pour tout $n \in \mathbb{N}$ tel que $n \geqslant n_0$ on a : $n \geqslant n_0$ et $n_0 > \frac{3}{5} - 2$ donc $n > \frac{3}{5} - 2$, autrement dit $n+2>\frac{3}{c}$

puis en multipliant par $\varepsilon > 0$: $\varepsilon(n+2) > 3$,

puis en divisant par n+2>0 : $\varepsilon>\frac{3}{n+2}$ autrement dit : $\frac{3}{n+2}<\varepsilon$.

Or,

or,
$$|u_n - 4| = \left| \frac{4n + 11}{n + 2} - \frac{4(n+2)}{n+2} \right| = \left| \frac{4n + 11}{n+2} - \frac{4n + 8}{n+2} \right| = \left| \frac{4n + 11 - (4n + 8)}{n+2} \right| = \left| \frac{4n + 11 - 4n - 8}{n+2} \right| = \left| \frac{3}{n+2} \right| = \frac{3}{n+2}$$

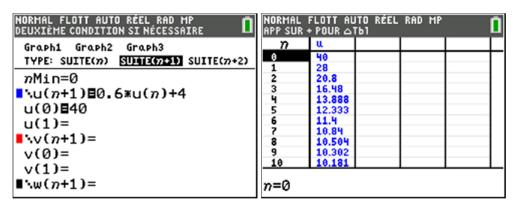
donc l'inégalité (*) s'écrit aussi : $|u_n - 4| < \varepsilon$.

Résumons:

 $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que : $\forall n \in \mathbb{N}$, si $n \geqslant n_0$ alors $|u_n - 4| < \varepsilon$ où n_0 est le premier entier naturel strictement plus grand que : $\frac{3}{\epsilon}$ -2.

Exercice 3 [11 points]

 $u_0=40$ et pour tout n entier naturel : $u_{n+1}=0$, $6u_n+4$



1. Calculer u_1 .

$$u_1 = 0.6u_0 + 4 = 0.6 \times 40 + 4 = 24 + 4 = 28$$

 $u_1 = 28$

2. Démontrer par récurrence que, pour tout entier naturel : $10 \leqslant u_{n+1} \leqslant u_n \leqslant 40$.

Pour tout $n \in \mathbb{N}$ on note P_n la proposition « $10 \leqslant u_{n+1} \leqslant u_n \leqslant 40$ ».

initialisation

On a : $10 \le 28 \le 40 \le 40$, or $u_1 = 28$ et $u_0 = 40$, donc : $10 \le u_0 \le u_1 \le 40$ autrement dit P_0 est vraie.

hérédité

Soit $k \in \mathbb{N}$ tel que P_k : « $10 \le u_{k+1} \le u_k \le 40$ » est vraie et montrons que

 P_{k+1} : « $10 \le u_{k+2} \le u_{k+1} \le 40$ » est vraie.

On a : $10 \leqslant u_{k+1} \leqslant u_k \leqslant 40$, en multipliant chaque membre par 0.6 > 0 on en déduit :

$$0.6 \times 10 \le 0.6 \times u_{k+1} \le 0.6 \times u_k \le 0.6 \times 40$$

autrement dit : $6 \le 0.6u_{k+1} \le 0.6u_k \le 24$,

puis en ajoutant 4 à chaque membre :

$$6 + 4 \le 0.6u_{k+1} + 4 \le 0.6u_k + 4 \le 24 + 4$$

autrement dit : $10 \le 0.6u_{k+1} + 4 \le 0.6u_k + 4 \le 28$.

Or, $0.6u_{k+1}+4=u_{k+2}$ et $0.6u_k+4=u_{k+1}$ donc : $10 \le u_{k+2} \le u_{k+1} \le 28 \le 40$, d'où en particulier $10 \le u_{k+2} \le u_{k+1} \le 40$: P_{k+1} est vraie.

Conclusion

Il résulte des deux points précédents et du principe de récurrence que :

 $\forall n \in \mathbb{N}, P_n \text{ est vraie, autrement dit que : } \forall n \in \mathbb{N}, \mathbf{10} \leqslant u_{n+1} \leqslant u_n \leqslant \mathbf{40}.$

3. Justifier que la suite (u_n) converge.

Il résulte de la question précédente que :

- $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$ donc la suite (u_n) est décroissante
- $\forall n \in \mathbb{N}$, $10 \leqslant u_n$ donc la suite (u_n) est minorée par la constante 10

La suite (u_n) est décroissante et minorée donc d'après le théorème de convergence monotone **elle est convergente**.

4. Déterminer sa limite ℓ.

On a, pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.6u_n + 4$, or : $\lim_{n \to +\infty} (n+1) = +\infty$,

donc : $\lim_{n \to +\infty} u_{n+1} = \lim_{N \to +\infty} u_N = \ell$ (*). D'autre part, par limite d'un produit et d'une

somme: $\lim_{n \to +\infty} (0.6u_n + 4) = 0.6\ell + 4$ (**).

On déduit de (*) et (**) que : $\ell = 0.6\ell + 4$, puis on a les équivalences :

$$\ell = 0.6\ell + 4 \Leftrightarrow \ell - 0.6\ell = 4 \Leftrightarrow 0.4\ell = 4 \Leftrightarrow \ell = \frac{4}{0.4} \Leftrightarrow \ell = 10$$

Conclusion : $\ell = 10$.

- **5.** Pour tout n entier naturel on pose : $v_n = u_n 10$.
 - a. Démontrer que (v_n) est géométrique, préciser sa raison et son premier terme.
 - ullet calculons v_0

$$v_0 = u_0 - 10 = 40 - 10 = 30$$

• montrons que la suite (v_n) est géométrique

Soit $n \in \mathbb{N}$, on a :

$$v_{n+1} = u_{n+1} - 10 = 0.6u_n + 4 - 10 = 0.6u_n - 6 = 0.6\left(u_n - \frac{6}{0.6}\right)$$

= $0.6(u_n - 10) = 0.6v_n$

Pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.6 \times v_n$ et 0.6 est une constante donc la suite (v_n) est géométrique de raison 0.6.

Conclusion:

La suite (v_n) est géométrique de raison 0, 6 et de premier terme $v_0=30$.

b. Exprimer v_n en fonction de n, $n \in \mathbb{N}$.

Soit $n \in \mathbb{N}$.

La suite (v_n) est géométrique donc, en notant q sa raison, on a : $v_n = v_0 \times q^n$. Or, q = 0.6 et $v_0 = 30$, donc : $v_n = 30 \times 0.6^n$.

<u>Conclusion</u>:

$$\forall n \in \mathbb{N}, v_n = 30 \times 0, 6^n$$

c. Pour tout $n \in \mathbb{N}$ on note S_n la somme des termes consécutifs de (v_n) de v_0 à v_n :

$$S_n = \sum_{k=0}^n v_k = v_0 + \dots + v_n$$

Exprimer S_n en fonction de n.

Soit $n \in \mathbb{N}$.

 \mathcal{S}_n est la somme de termes consécutifs de la suite géométrique (v_n) de v_0 à v_n donc :

$$S_n = v_0 \times \frac{1 - q^{n+1}}{1 - q}$$

Or, $v_0 = 30$ et q = 0.8 donc :

$$S_n = 30 \times \frac{1 - 0.6^{n+1}}{1 - 0.6} = 30 \times \frac{1 - 0.6^{n+1}}{0.4} = \frac{30}{0.4} \times (1 - 0.6^{n+1}) = 75(1 - 0.6^{n+1})$$

$$S_n = 75 - 75 \times 0.6^{n+1}$$

Conclusion:

$$\forall n \in \mathbb{N}, S_n = 75 - 75 \times 0, 6^{n+1}$$

6. Pour tout $n \in \mathbb{N}$ on note T_n la somme des termes consécutifs de (u_n) de u_0 à u_n :

$$T_n = \sum_{k=0}^n u_k = u_0 + \dots + u_n$$

a. Déduire de 5. c. que : $\forall n \in \mathbb{N}$, $T_n = 10n + 85 - 45 \times 0$, 6^n .

Soit $n \in \mathbb{N}$, on a :

Solt
$$n \in \mathbb{N}$$
, of a.

$$T_n = u_0 + \dots + u_n = v_0 + 10 + \dots + v_n + 10 = \underbrace{v_0 + \dots + v_n}_{S_n} + \underbrace{10 + \dots + 10}_{n+1 \text{ termes } 10}$$

$$= S_n + (n+1) \times 10 = 75 - 75 \times 0,6^{n+1} + 10n + 10 = 10n + 85 - 75 \times 0,6^{n+1}$$

$$= 10n + 85 - 45 \times 0,6^n$$

Conclusion:

$$\forall n \in \mathbb{N}, T_n = 10n + 85 - 45 \times 0, 6^n$$

b. Déterminer
$$\lim_{n\to +\infty} T_n$$
.
On a : $-1<0.6<1$, or si $-1< q<1$, alors : $\lim_{n\to +\infty} q^n=0$, donc $\lim_{n\to +\infty} 0.6^n=0$.

On a : $\lim_{n \to +\infty} (10n) = +\infty$, puis par limite d'une somme :

$$\lim_{n \to +\infty} (10n + 85 - 45 \times 0.6^n) = +\infty$$

c'est-à-dire:

$$\lim_{n \to +\infty} (10n + 85 - 45 \times 0.6^n) = +\infty$$

Conclusion:

$$\lim_{n\to+\infty}T_n=+\infty$$