
6^e 13 Aire et volume

vocabulaire

L'aire d'une figure mesure la surface à l'intérieur de la figure.

On compte combien de fois une unité d'aire peut être placée pour **couvrir** l'**intérieur de la figure**, même si ce nombre n'est pas entier.

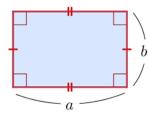
<u>exemple</u>

Une unité d'aire peut être placée 5,5 fois pour couvrir entièrement l'intérieur de la figure donc l'aire de cette figure est 5,5 unités d'aire.

vocabulaire

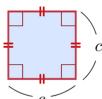
1 mm² est l'aire d'un carré de 1 mm de côté, 1 cm² est l'aire d'un carré de 1 cm de côté, 1 m² est l'aire d'un carré de 1 m de côté etc.

Pour passer d'une unité d'aire à une autre on dispose de trois méthodes :

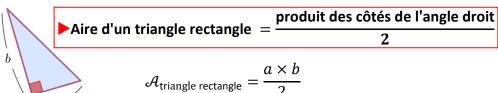

- utiliser une grille de conversion chaque colonne étant divisée en deux
- poser le calcul en utilisant 1 cm² = 1 cm \times 1 cm etc.
- utiliser la règle du facteur 100 : d'une unité d'aire à l'unité d'aire voisine plus petite on multiplie le nombre par 100

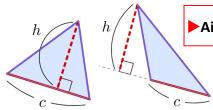
<u>exemple</u>

Convertir 3,7 cm² en mm² par les deux dernières méthodes :


- 3,7 cm² = 3,7 × 1 cm × 1 cm = 3,7 × 10 mm × 10 mm = 3,7 × 100 mm² = 370 mm²
- le mm² est l'unité d'aire plus petite voisine du cm² donc on applique la règle du facteur 100 : 3,7 cm² = 3,7 \times 100 mm² = 370 mm²

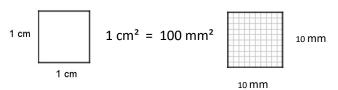
formules


ightharpoonup Aire d'un rectangle = Longueur imes largeur


$$\mathcal{A}_{\text{rectangle}} = L \times \ell = a \times b$$

Aire d'un carré = côté \times côté

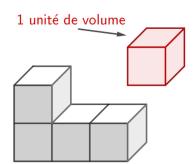
$$\mathcal{A}_{\rm carr\acute{e}} = c \times c$$


Aire d'un triangle = $\frac{\text{côté} \times \text{hauteur associée}}{2}$

$$\mathcal{A}_{\text{triangle}} = \frac{c \times h}{2}$$

Aire d'un disque $= \pi \times \text{rayon} \times \text{rayon}$

$$\mathcal{A}_{\text{disque}} = \pi \times R \times R = \pi R^2$$



vocabulaire

Le volume d'un solide mesure l'espace à l'intérieur du solide.

On compte combien de fois une unité de volume peut être placée pour **remplir** l'**intérieur du solide**, même si ce nombre n'est pas entier.

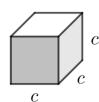
exemple

Une unité de volume peut être placée 4 fois pour remplir l'intérieur du solide donc le volume de ce solide est 4 unités de volume.

vocabulaire

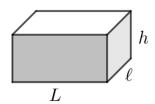
1 mm³ est le volume d'un cube de 1 mm de côté, 1 cm³ est le volume d'un cube de 1 cm de côté, 1 m³ est le volume d'un cube de 1 m de côté etc.

Pour passer d'une unité de volume à une autre, on dispose de trois méthodes:

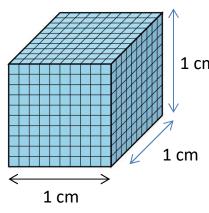

- utiliser une grille de conversion, chaque colonne étant divisée en trois
- poser le calcul en utilisant 1 cm³ = 1 cm \times 1 cm \times 1 cm etc.
- utiliser la règle du facteur 1 000 : d'une unité d'aire à l'unité d'aire voisine plus petite on multiplie le nombre par 1 000

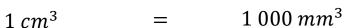
exemple

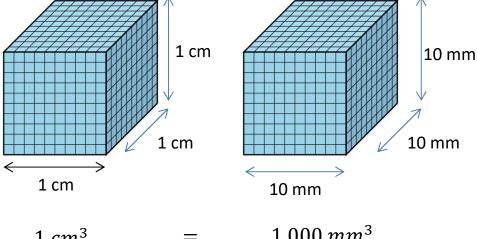
Convertir 1,2 cm³ en mm³ par les deux dernières méthodes :


- 1,2 cm³ = 1,2 × 1 cm × 1 cm × 1 cm = 1,2 × 10 mm × 10 mm × 10 mm $= 1.2 \times 1000 \text{ mm}^3 = 1200 \text{ mm}^3$
- le mm³ est l'unité de volume plus petite voisine du cm³ donc on applique la règle du facteur 1 000 : 1,2 cm³ = 1,2 \times 1 000 mm³ = 1 200 mm³

formules


ightharpoonupvolume d'un cube = côté imes côté imes côté


$$V_{cube} = c \times c \times c$$



volume d'un pavé droit = Longueur \times largeur \times hauteur

$$V_{pavé\ droit} = L \times \ell \times h$$

