Exercice 1 [2 pts]

Donner la forme canonique de E(x) = (x - 1)(x - 5).

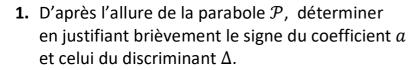
Exercice 2 [4 pts]

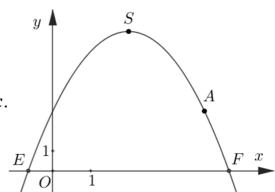
Résoudre dans \mathbb{R} l'inéquation : $(2x-1)(x+3) \ge 4$

Exercice 3 [8 pts]

Dans un repère orthogonal du plan on note \mathcal{P} la parabole de sommet S(2;7) passant par A(4;3).

Cette parabole est la représentation graphique d'une fonction polynôme du second degré $f: x \mapsto ax^2 + bx + c$.





- **2.** Déterminer la forme canonique de f(x). En déduire que pour tout réel x on a : $f(x) = -x^2 + 4x + 3$.
- **3.** Dresser, en justifiant, le tableau de variation de f.
- **4.** \mathcal{P} coupe l'axe des abscisses en E et F, $x_E < x_F$: déterminer les coordonnées de E et F.

Exercice 4 [4 pts]

Résoudre l'inéquation :

$$\frac{2x - 8}{-x^2 + 14x - 49} \le 0$$

Exercice 5 [2 pt]

<u>Préambule</u>

NORMAL FLOTT AUTO RÉEL RAD MP
$$\left(\frac{1+\sqrt{5}}{2} \right)^{24}$$

$$103682$$

La calculatrice affirme que :

$$\left(\frac{1+\sqrt{5}}{2}\right)^{24} = 103\ 682$$

On souhaite savoir si cette affirmation un peu surprenante est vraie ou bien fausse.

On pose:

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

- **1.** Vérifier que : $\varphi^2 = \varphi + 1$.
- **2.** Écrire φ^3 , φ^6 et φ^{12} sous la forme $a\varphi + b$.
- **3.** On rappelle que $\sqrt{5} \notin \mathbb{Q}$; répondre à la question posée en préambule.

Corrigé

Exercice 1

Donner la forme canonique de E(x) = (x-1)(x-5).

Pour tout réel x, on a :

$$E(x) = (x-1)(x-5) = x^2 - 5x - x + 5 = x^2 - 6x + 5$$

$$= (x)^2 - 2(x)(3) + (3)^2 - 9 + 5 = (x-3)^2 - 4$$
On a: $E(x) = (x)^2 - 2(x)(3) + (3)^2 - 9 + 5 = (x-3)^2 - 4$.

La forme canonique est : $E(x) = (x-3)^2 - 4$.

Exercice 2

Résoudre dans \mathbb{R} l'inéquation : $(2x-1)(x+3) \ge 4$.

On a les équivalences :

$$(2x-1)(x+3) > 4 \Leftrightarrow 2x^2 + 6x - x - 3 > 4 \Leftrightarrow 2x^2 + 5x - 3 - 4 > 0$$

 $\Leftrightarrow 2x^2 + 5x - 7 > 0$

 $2x^2 + 5x - 7$ est de la forme $ax^2 + bx + c$ avec a = 2, b = 5 et c = -7, de discriminant :

$$\Delta = b^2 - 4ac = (5)^2 - 4(2)(-7) = 25 + 56 = 81$$

 $\Delta > 0$ donc $2x^2 + 5x - 7$ admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-5 - \sqrt{81}}{2(2)} = \frac{-5 - 9}{4} = \frac{-14}{4} = -\frac{7}{2}$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-5 + \sqrt{81}}{2(2)} = \frac{-5 + 9}{4} = \frac{4}{4} = 1$$

Règle : « $ax^2 + bx + c$ est du signe de aà l'extérieur des racines ».

tableau de signes :

x	-∞	$-\frac{7}{2}$		1	+∞
$2x^2 + 5x - 7$	+	φ	_	φ	+

On déduit de ce tableau de signes l'ensemble des solutions de $2x^2 + 5x - 7 \ge 0$:

$$S =]-\infty; -\frac{7}{2}] \cup [1; +\infty[$$

Exercice 3

 \mathcal{P} la parabole de sommet S(2;7) passant par A(4;3).

1. D'après l'allure de la parabole \mathcal{P} , déterminer en justifiant brièvement le signe du coefficient a et celui du discriminant Δ .

La parabole \mathcal{P} tourne ses bras vers le bas donc a < 0.

La parabole ${\mathcal P}$ coupe deux fois l'axe des abscisses donc ${\pmb \Delta}>{\pmb 0}.$

2. Donner la forme canonique de f(x). En déduire que $\forall x \in \mathbb{R}$, $f(x) = -x^2 + 4x + 3$. On a : $S(\alpha; \beta)$, or S(2; 7) donc $\alpha = 2$ et $\beta = 7$, donc : $\forall x \in \mathbb{R}$, $f(x) = a(x-2)^2 + 7$. A(4; 3) donc f(4) = 3.

Pour x = 4, on obtient : $f(4) = a(4-2)^2 + 7$ c'est-à-dire : 3 = 4a + 7,

$$3 - 7 = 4a \Leftrightarrow -4 = 4a \Leftrightarrow a = -1$$

La forme canonique est donc : $\forall x \in \mathbb{R}, f(x) = -(x-2)^2 + 7$.

Développons :

$$f(x) = -(x-2)^2 + 7 = -(x^2 - 4x + 4) + 7 = -x^2 + 4x - 4 + 7 = -x^2 + 4x + 3$$

On a donc bien : $\forall x \in \mathbb{R}$, $f(x) = -x^2 + 4x + 3$.

3. Dresser, en justifiant, le tableau de variation de f.

Pour tout
$$x \in \mathbb{R}$$
, $f(x) = -x^2 + 4x + 3$.
 $f(x) = -x^2 + 4x + 3$ avec $a = -1$, $b = 4$ et $c = 3$.

$$\alpha = \frac{-b}{2a} = \frac{-4}{2(-1)} = \frac{-4}{-2} = 2$$

$$\beta = f(\alpha) = f(2) = -(2)^2 + 4(2) + 3 = -4 + 8 + 3 = 7$$

a = -1, a < 0 donc :

- f est croissante sur] $-\infty$; α] c'est-à-dire sur] $-\infty$; 2]
- ullet f est décroissante sur $[\alpha; +\infty[$ c'est-à-dire sur $[2; +\infty[$

On obtient finalement:

x	$-\infty$	$\alpha = 2$	+∞
Sens de		$_{\pi}\beta=7$	_
variation	/	/ P .	
de f			7

4. \mathcal{P} coupe l'axe des abscisses en E et F, $x_E < x_F$, coordonnées de E et F

Les abscisses des points E et F sont les solutions de l'équation f(x)=0, c'est-à-dire de l'équation $-x^2+4x+3=0$.

$$-x^2 + 4x + 3$$
 est de la forme $ax^2 + bx + c$ avec $a = -1$, $b = 4$ et $c = 3$, de discriminant : $\Delta = b^2 - 4ac = (4)^2 - 4(-1)(3) = 16 + 12 = 28$.

$$\sqrt{28} = \sqrt{4 \times 7} = \sqrt{4} \times \sqrt{7} = 2\sqrt{7}$$

$$\sqrt{28} = \sqrt{4} \times \sqrt{7} = 2\sqrt{7}$$

 $\Delta > 0$ donc $-x^2 + 4x + 3$ admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - 2\sqrt{7}}{2(-1)} = \frac{4 + 2\sqrt{7}}{2} = \frac{2(2 + \sqrt{7})}{2 \times 1} = 2 + \sqrt{7}$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + 2\sqrt{7}}{2(-1)} = \frac{4 - 2\sqrt{7}}{2} = \frac{2(2 - \sqrt{7})}{2 \times 1} = 2 - \sqrt{7}$$

Comme $x_E < x_F$, on obtient finalement : $E(2 - \sqrt{7}; \mathbf{0})$ et $F(2 + \sqrt{7}; \mathbf{0})$.

Exercice 4

Résoudre l'inéquation :

$$\frac{2x-8}{-x^2+14x-49}\leqslant 0$$

Recherche des valeurs interdites

 $x^2 - 14x + 49$ est de la forme $ax^2 + bx - 15$ avec a = 1, b = -14 et c = 49, de discriminant : $\Delta = b^2 - 4ac = (-14)^2 - 4(1)(49) = 196 - 196 = 0$. $\Delta = 0$ donc $x^2 - 14x + 49$ admet une seule racine :

$$x_0 = \frac{-b}{2a} = \frac{+14}{2(1)} = 7$$

Il y a une seule valeur interdite: 7.

• Étude de 2x - 8

$$2x - 8 = 0 \Leftrightarrow 2x = 8 \Leftrightarrow x = \frac{8}{2} \Leftrightarrow x = 4$$

• tableau de signes

Règle : « ax + best du signe de a à droite de sa racine »

Règle dans le cas $\Delta=0$: « lorsqu'elle admet une seule racine, ax^2+bx+c est partout du signe de a et s'annule une fois ».

On obtient le tableau de signes :

X	$-\infty$	4		7	+∞
2x - 8	_	0	+		+
$-x^2 + 14x - 49$	_		-	Ф	-
Q(x)	+	0	_		_
		1		\rightarrow	

La dernière ligne de ce tableau de signe permet d'obtenir l'ensemble des solutions de :

$$\frac{2x - 8}{-x^2 + 14x - 49} \le 0$$

et on obtient : $S = [4; 7[\cup]7; +\infty[$.

Exercice 5

Préambule

La calculatrice donne :

$$\left(\frac{1+\sqrt{5}}{2}\right)^{24} = 103\ 682$$

On cherche à savoir si ce résultat surprenant est exact ou bien si la calculatrice se trompe.

On pose:

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

1. Vérifier que $\varphi^2 = \varphi + 1$.

On a:

$$\varphi^{2} = \left(\frac{1+\sqrt{5}}{2}\right)^{2} = \frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}} = \frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{4} = \frac{1+2\sqrt{5}+5}{4}$$
$$= \frac{6+2\sqrt{5}}{4} = \frac{2\left(3+\sqrt{5}\right)}{2\times2} = \frac{3+\sqrt{5}}{2} = \frac{2+1+\sqrt{5}}{2} = \frac{2}{2} + \frac{1+\sqrt{5}}{2} = 1+\varphi$$

On a donc bien : $\varphi^2 = \varphi + 1$.

2. Écrire φ^3 , φ^6 et φ^{12} sous la forme $a\varphi + b$.

•
$$\varphi^3 = \varphi \times \varphi^2 = \varphi(\varphi + 1) = \varphi^2 + \varphi = \varphi + 1 + \varphi = 2\varphi + 1$$

 $\varphi^3 = 2\varphi + 1$

•
$$\varphi^6 = (\varphi^3)^2 = (2\varphi + 1)^2 = 4\varphi^2 + 4\varphi + 1 = 4(\varphi + 1) + 4\varphi + 1 = 8\varphi + 5$$

 $\varphi^6 = 8\varphi + 5$

•
$$\varphi^{12} = (\varphi^6)^2 = (8\varphi + 5)^2 = 64\varphi^2 + 80\varphi + 25 = 64(\varphi + 1) + 80\varphi + 25$$

= $144\varphi + 89$
 $\varphi^{12} = 144\varphi + 89$

3. On a montré en **2.** que :
$$\varphi^{12} = 144\varphi + 89$$
.
$$\varphi^{24} = (\varphi^{12})^2 = (144\varphi + 89)^2 = 144^2\varphi^2 + 2 \times 144\varphi \times 89 + 89^2$$

$$= 20736(\varphi + 1) + 25632\varphi + 7921 = (20736 + 25632)\varphi + 20736 + 7921$$

$$= 46.269\varphi + 29657$$

$$= 46\ 368\varphi + 28657$$

$$= 46368 \times \frac{1+\sqrt{5}}{2} + 28657$$

$$= 51841 + 23184\sqrt{5}$$

Supposons
$$\varphi^{24} = 103\ 682$$
, alors $51\ 841 + 23\ 184\ \sqrt{5} = 103\ 682$

donc
$$\sqrt{5} = \frac{103\ 682 - 51\ 841}{23\ 184}$$
 donc $\sqrt{5} \in \mathbb{Q}$ ce qui est faux, donc $\varphi^{24} \neq 103\ 682$

Conclusion:

$$\left(\frac{1+\sqrt{5}}{2}\right)^{12} \neq 103 682$$

La calculatrice se trompe.

<u>Complément</u> Avec GeoGebra :

phi:=(1+sqrt(5))/2

phi :=
$$\frac{1}{2} (\sqrt{5} + 1)$$

phi^24

phi^24

23184 $\sqrt{5} + 51841$

\$2

103681.9999904