Dans tout ce chapitre une unité de distance est choisie.

D Rappel sur les normes

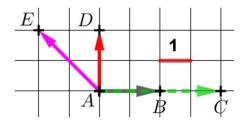
- $\bullet \ \|\overrightarrow{AB}\| = AB$
- si $\vec{u} = \overrightarrow{MN}$, alors $\|\vec{u}\| = \|\overrightarrow{MN}\| = MN$

Définition du produit scalaire

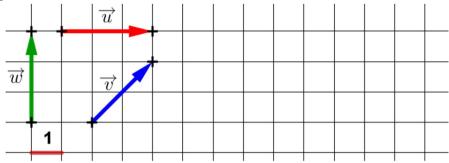
Une unité de distance étant choisie, on appelle produit scalaire des vecteurs \vec{u} et \vec{v} le **nombre réel** noté $\vec{u} \cdot \vec{v}$ tel que :

- si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$. alors : $\vec{u} \cdot \vec{v} = 0$
- si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, alors : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$
- $\triangleright D$ Si α est une mesure en radian de (\vec{u}, \vec{v}) alors une mesure de (\vec{v}, \vec{u}) est $(-\alpha)$ et on a : $\cos(\vec{v}, \vec{u}) = \cos(\vec{u}, \vec{v}) = \cos \widehat{BAC}$ où $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$.
- Pour $A \neq B$ et $A \neq C$: $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$.
- Pour tous vecteurs \vec{u} et \vec{v} :
- $\bullet \ \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$ $\bullet \ (-\overrightarrow{u}) \cdot \overrightarrow{v} = -\overrightarrow{u} \cdot \overrightarrow{v} \qquad \bullet \ \overrightarrow{u} \cdot (-\overrightarrow{v}) = -\overrightarrow{u} \cdot \overrightarrow{v}$

- **A01** Calculer : $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- Calculer : $\overrightarrow{AB} \cdot \overrightarrow{AD}$.
- Calculer la distance AE puis calculer : $\overrightarrow{AB} \cdot \overrightarrow{AE}$.



A02 Avec quadrillage

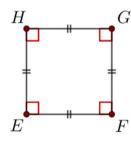


- **1.** Déterminer $\vec{u} \cdot \vec{w}$.
- 2. À l'aide du quadrillage, déterminer une mesure de l'angle (\vec{u}, \vec{v}) et déterminer $||\vec{v}||$, en déduire $\vec{u} \cdot \vec{v}$.

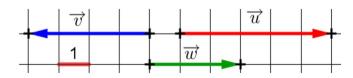
À retenir : lorsque les deux vecteurs d'un produit scalaire « commencent » par des points différents on peut dessiner des représentants de ces vecteurs à partir d'un même point du plan : cela permet de déterminer facilement l'angle!

A03 EF = 7

- **1.** Déterminer : $\overrightarrow{EF} \cdot \overrightarrow{EH}$ et $\overrightarrow{GF} \cdot \overrightarrow{HG}$
- **2.** Déterminer : $\overrightarrow{EF} \cdot \overrightarrow{FH}$.



A04 Déterminer $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$, $\vec{v} \cdot \vec{w}$ et $\vec{u} \cdot \vec{u}$



P produit scalaire de deux vecteurs colinéaires

• si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ sont colinéaires de même sens alors :

$$\vec{u} \cdot \vec{v} = \underbrace{+ ||\vec{u}|| \times ||\vec{v}||}_{\text{produit des normes}}$$

• si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ sont <u>colinéaires</u> de sens <u>contraires</u> alors :

$$\vec{u} \cdot \vec{v} = \underbrace{-\|\vec{u}\| \times \|\vec{v}\|}_{\text{opposé du produit des normes}}$$

D ● orthogonalité de deux vecteurs donnés à l'aide de points

A, B, C et D quatre points tels que $A \neq B$ et $C \neq D$ alors :

 \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux ($\overrightarrow{AB} \perp \overrightarrow{CD}$) $\stackrel{déf}{\Longleftrightarrow}$ les droites (AB) et (CD) sont perpendiculaires.

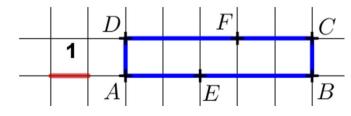
• orthogonalité de deux vecteurs purs

Par convention : $\vec{0}$ est **orthogonal** à tout vecteur.

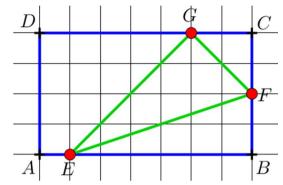
Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, on dit que \vec{u} et \vec{v} sont **orthogonaux** lorsque $\overrightarrow{AB} \perp \overrightarrow{CD}$ où A, B, C et D vérifient $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$.

P Théorème fondamental : $\vec{v} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

A05 Déterminer : $\overrightarrow{AE} \cdot \overrightarrow{FD}$, $\overrightarrow{AD} \cdot \overrightarrow{BC}$ et $\overrightarrow{BE} \cdot \overrightarrow{AD}$:



A06 E, F et G appartiennent aux côtés du rectangle ABCD avec AE = 1, F est le milieu de [BC], CG = 2:



- 1. En utilisant le quadrillage, déterminer EF, EG, GF.
- **2.** Déterminer la nature de EFG, en déduire : $\overrightarrow{GE} \cdot \overrightarrow{GF}$.
- P Dans un repère <u>orthonormé</u> on considère deux points A et B et un vecteur $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, alors :

►
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 ► $\|\vec{u}\| = \sqrt{x^2 + y^2}$

- A07 Un élève affirme que « la norme d'une somme de vecteurs est égal à la somme des normes » : trouver un contre-exemple.
- \boxed{P} (preuve très difficile, PDF) Pour tous vecteurs \vec{u} et \vec{v} on a :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} [\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2]$$
 (*)

- P Pour tout \vec{u} et tout réel $k : ||k\vec{u}|| = |k| \times ||\vec{u}||$.
- A08 Déduire de (*) que, pour tous vecteurs \vec{u} et \vec{v} :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} [\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2] (**)$$

 \overline{F} Pour tous points A, B et C:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} [AB^2 + AC^2 - BC^2] \quad (***)$$

- \bullet les deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} ont même point origine.
- A09 Démontrer la propriété précédente à partir de (**).

A10
$$AB = 5$$
, $AC = 6$ et $BC = 10$, calculer : $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{AB} \cdot \overrightarrow{BC}$

A11
$$EF = 4$$
, $EG = 5$ et $FG = 7$, calculer : \overrightarrow{EF} . \overrightarrow{EG} et \overrightarrow{FE} . \overrightarrow{FG} .

A12 Soit ABC un triangle tel que : AB = 5, AC = 7, BC = 9. Déterminer la valeur exacte de $\cos \widehat{BAC}$, puis à l'aide de la calculatrice, en déduire la mesure de \widehat{BAC} arrondie au degré.

A13 Soit ABC un triangle.

À l'aide de la formule (***) démontrer l'équivalence : ABC est rectangle en $A \Leftrightarrow AB^2 + AC^2 = BC^2$

- A14 Dans un repère **orthonormé** on considère $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.
- **1.** M.Q.: $\|\vec{u} + \vec{v}\|^2 = x^2 + x'^2 + y^2 + y'^2 + 2(xx' + yy')$
- **2.** À l'aide de la formule (*) démontrer que : $\vec{u} \cdot \vec{v} = xx' + yy'$.
- \fbox{P} Expression du produit scalaire en repère $\fbox{orthonorm\'e}$

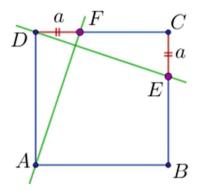
Dans un repère <u>orthonormé</u>, pour tout $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$$

A15 Dans un repère orthonormé, on considère les vecteurs $\vec{u} \begin{pmatrix} 3 \\ 7.5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -5 \\ 2 \end{pmatrix}$: sont-ils orthogonaux ?

A16 ABCD est un carré de côté 1. On munit le plan du repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD})$:

- déterminer les coordonnées des vecteurs \overrightarrow{AF} et \overrightarrow{DE}
- démontrer que $(AF) \perp (DE)$



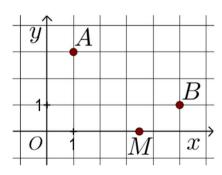
A17 Dans un repère orthonormé on considère A(5;2) et B(1;4); donner l'équation réduite de la médiatrice de [AB].

A18 Dans un repère orthonormé, m représentant un paramètre réel, on considère $\vec{u}\binom{m}{3}$ et $\vec{v}\binom{m+1}{-2}$: pour quelle(s) valeur(s) de m les deux vecteurs \vec{u} et \vec{v} sont-ils orthogonaux ?

A19 Dans un repère orthonormé on donne A(1;3) et B(5;1).

Pour tout $m \in \mathbb{R}$, on note M le point du plan tel que $x_M = m$ et $y_M = 0$ (voir figure).

Pour quelle(s) valeur(s) de m le triangle ABM est-il rectangle en M ?



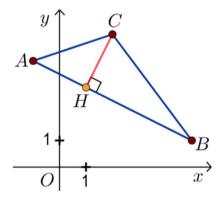
- $\boxed{D} \bullet \vec{u} \neq \vec{0}$ est un **vecteur directeur** d'une droite $\stackrel{d\acute{e}f}{\Longleftrightarrow}$ il existe deux points distincts A et B de cette droite tels que \vec{u} et \overrightarrow{AB} sont **colinéaires**
- $\vec{n} \neq \vec{0}$ est un **vecteur normal** à une droite $\stackrel{déf}{\Longleftrightarrow}$ il existe deux points distincts A et B de cette droite tels que \vec{n} et \overrightarrow{AB} sont **orthogonaux**
- i intuitivement : un vecteur directeur est « parallèle à la droite » et un vecteur normal est « perpendiculaire à la droite ». Tout multiple non nul d'un vecteur directeur est encore un vecteur directeur, tout multiple non nul d'un vecteur normal est encore un vecteur normal.
- \overline{P} Dans le plan muni d'un repère, toute droite admet une équation de la forme ax + by + c = 0 avec a et b non tous les deux nuls, appelée **équation cartésienne**.
- *i* Une droite admet une multitude d'équations cartésiennes mais elle n'admet qu'une seule équation réduite.
- A20 Dans plan muni d'un repère, d est la droite passant par A(1;2) et admettant $\vec{u} \binom{3}{4}$ pour vecteur directeur. Donner une équation cartésienne puis l'équation réduite de d.
- A21 Dans plan muni d'un repère, Δ est la droite passant par E(5;1) et admettant $\vec{n} {7 \choose 2}$ pour vecteur normal.

 Donner une équation cartésienne puis l'équation réduite de Δ .

- P Soient a et b deux réels non tous les deux nuls, dans un repère quelconque du plan la droite d'équation cartésienne ax + by + c = 0 admet $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ comme vecteur directeur.
- P Soient a et b deux réels non tous deux nuls, dans un repère <u>orthonormé</u> du plan la droite d' équation cartésienne ax + by + c = 0 admet $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ pour **vecteur normal**.

 <u>astuce</u> vecteur <u>normal</u>: coefficients dans l'ordre normal.
- A22 Justifier la formule du vecteur normal.
- A23 Dans un repère orthonormé du plan donner une équation cartésienne de la médiatrice de [AB] où A(1;3) et B(5;1).
- A24 Dans un repère orthonormé, on donne : A(-1;4), B(5;1) et C(2;5).

On note H le pied de la hauteur issue de C du triangle ABC (voir figure).



- **1.** Calculer les coordonnées de \overrightarrow{AB} .
- **2.** Déterminer une équation de (AB).
- **3.** Déterminer une équation de (CH).
- **4.** À l'aide d'un système de deux équations à deux inconnues calculer les coordonnées de *H*.
- **5.** Déterminer l'aire du triangle *ABC*.

A25 Dans le plan munit d'un repère orthonormé on donne :

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ et $\vec{w} \begin{pmatrix} x'' \\ y'' \end{pmatrix}$.

- **1.** Exprimer $\vec{u} \cdot (\vec{v} + \vec{w})$ en fonction de x, x', x'', y, y' et y''.
- **2.** Exprimer $\vec{u} \cdot \vec{v}$ et $\vec{u} \cdot \vec{w}$ en fonction de x, x', x'', y, y' et y''.
- **3.** Déduire de ce qui précède que : $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- P Pour tous vecteurs \vec{u} , \vec{v} , \vec{w} et tout réel k:

A26 Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs et k un réel, justifier que :

$$\vec{u} \cdot k \vec{v} = k \times \vec{u} \cdot \vec{v}$$
 et $k \vec{u} \cdot \vec{v} = k \times \vec{u} \cdot \vec{v}$

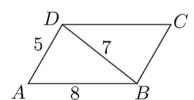
P Pour tous vecteurs \vec{u} , \vec{v} , \vec{w} et tout réel k:

$$\vec{u} \cdot k\vec{v} = (k\vec{u}) \cdot \vec{v} = k \times \vec{u} \cdot \vec{v}$$

- A27 On donne $\vec{u} \cdot \vec{v} = 2$ et $\vec{u} \cdot \vec{w} = 3$, déterminer $\vec{u} \cdot (\vec{v} + 5\vec{w})$.
- A28 Soit ABCD un parallélogramme

tel que : AB = 8, AD = 5, BD = 7.

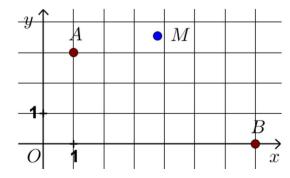
Calculer : $\overrightarrow{AB} \cdot \overrightarrow{AC}$.



A29 Repère orthonormé, A(1;3) et B(7;0).

Déterminer l'ensemble des points M du plan tels que :

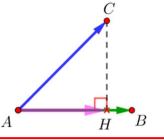
$$\overrightarrow{AB} \cdot \overrightarrow{AM} = 15$$



P Théorème de projection orthogonale

 $A \neq B$, pour tout point C de projeté orthogonal H sur (AB) on a :

- $ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$
- $\overrightarrow{AC} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB}$



A30 Démontrer le théorème de projection orthogonale.

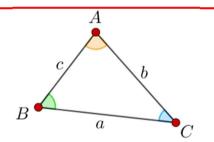
A31 $\overrightarrow{AB} = 6$, déterminer l'ensemble des points M du plan tels que $\overrightarrow{AB} \cdot \overrightarrow{AM} = 12$.

A32 AB = 4, déterminer l'ensemble des points M du plan tels que : $\overrightarrow{AB} \cdot \overrightarrow{AM} = -8$.

P Formule d'Al-Kashi

Pour tout triangle *ABC* avec les notations de la figure on a :

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

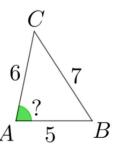


Autrement dit:

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos \widehat{BAC}$$

A33 On considère un triangle ABC tel que : AB = 5, AC = 6 et BC = 7.

- **1.** Déterminer la valeur exacte de $\cos \widehat{BAC}$.
- **2.** En déduire la mesure de \widehat{BAC} arrondie à $0,1^{\circ}$.



 \overline{D} Le produit scalaire d'un vecteur par lui-même s'appelle le carré scalaire du vecteur : le carré scalaire de \vec{u} se note \vec{u}^2 .

 \boxed{P} Pour tous points A et B et tout vecteur \vec{u} :

$$\vec{u}^2 = ||\vec{u}||^2$$
 et $\rightarrow AB^2 = \overrightarrow{AB}^2$

P « identités remarquables »

Pour tous vecteurs \vec{u} et \vec{v} , on a :

$$\bullet (\vec{u} + \vec{v})^2 = \vec{u}^2 + 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

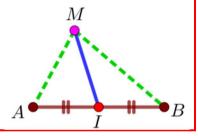
$$\bullet (\vec{u} - \vec{v})^2 = \vec{u}^2 - 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

$$\bullet \ (\overrightarrow{u} + \overrightarrow{v})(\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

 \overline{F} Théorème de la médiane

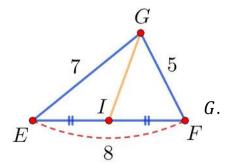
Soient A et B deux points, I le milieu de [AB]. Pour tout point M on a :

$$MA^2 + MB^2 = 2 MI^2 + \frac{1}{2}AB^2$$



A34 Démontrer le théorème de la médiane.

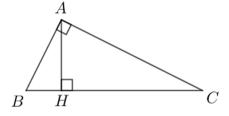
A35 Calculer GI.



A36 AB = 6, déterminer l'ensemble des points M du plan tels que : $MA^2 - MB^2 = 12$.

A37 Soit ABC un triangle rectangle en A, H le projeté orthogonal de A sur (BC). Démontrer que :

$$HB \times HC = HA^2$$



 \overline{P} Dans un repère orthonormé l'ensemble des points M(x;y) tels que : $(x-a)^2 + (y-b)^2 = r^2$ avec r > 0 est le cercle de centre $\Omega(a;b)$ et de rayon r.

Cette équation s'appelle parfois l'équation canonique de (\mathcal{C}) .

[i] Explication : $M(x; y) \in \mathcal{C}_{\Omega(a;b),r} \Leftrightarrow \Omega M = r \Leftrightarrow \Omega M^2 = r^2$

A38 Dans un repère orthonormé du plan déterminer l'ensemble des points M(x; y) tels que : $x^2 + y^2 - 2x - 4y = 0$.

A39 On munit le plan d'un repère orthonormé. Déterminer les coordonnées du point d'intersection du cercle \mathcal{C} de centre $\Omega(-1;2)$ et de rayon $\sqrt{10}$ et de la droite d d'équation y=3:

